Pd dissolution capabilities of a variety of organic triiodides (OrgI3) in organic solvent, where Org+ = 3,5-bis(phenylamino)-1,2-dithiolylium [(PhHN)2DTL+], 3,5-bis(morpholino)-1,2-dithiolylium (Mo2DTL+); tetrabuthylammonium (TBA+); and tetraphenylphosphonium (Ph4P+), toward the crude metal and model-spent three-way catalyst (TWC), are described here. Enhanced Pd-leaching yields from TWC were obtained using OrgI3 solutions (up to 98%) in spite of the fully inorganic KI3 one (38%) in the same mild conditions. The reaction products were isolated and characterized as Org2[Pd2I6]. Crystallographic and DFT studies highlighted the presence of several ion-pair secondary interactions in the products, which can explain the improved effectiveness of the Pd etching by OrgI3. For comparison purposes, the gold leaching by using R2DTLI3 and the obtained Au complexes were investigated. Preliminary results addressed to recover the metal and the reagents from the etching product showed that (PhHN)2DTLI3 is the most promising reagent to improve sustainability in the whole process

Ionic Couple-Driven Palladium Leaching by Organic Triiodide Solutions

Fornasiero P;
2017

Abstract

Pd dissolution capabilities of a variety of organic triiodides (OrgI3) in organic solvent, where Org+ = 3,5-bis(phenylamino)-1,2-dithiolylium [(PhHN)2DTL+], 3,5-bis(morpholino)-1,2-dithiolylium (Mo2DTL+); tetrabuthylammonium (TBA+); and tetraphenylphosphonium (Ph4P+), toward the crude metal and model-spent three-way catalyst (TWC), are described here. Enhanced Pd-leaching yields from TWC were obtained using OrgI3 solutions (up to 98%) in spite of the fully inorganic KI3 one (38%) in the same mild conditions. The reaction products were isolated and characterized as Org2[Pd2I6]. Crystallographic and DFT studies highlighted the presence of several ion-pair secondary interactions in the products, which can explain the improved effectiveness of the Pd etching by OrgI3. For comparison purposes, the gold leaching by using R2DTLI3 and the obtained Au complexes were investigated. Preliminary results addressed to recover the metal and the reagents from the etching product showed that (PhHN)2DTLI3 is the most promising reagent to improve sustainability in the whole process
2017
Istituto di Chimica dei Composti OrganoMetallici - ICCOM -
Dithiomalonamide
Ionic couple
Palladium
Polyhalides
Waste prevention
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/328344
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? ND
social impact