Both regularization and compression are important issues in image processing and have been widely approached in the literature. The usual procedure to obtain the compression of an image given through a noisy blur requires two steps: first a deblurring step of the image and then a factorization step of the regularized image to get an approximation in terms of low rank nonnegative factors. We examine here the possibility of swapping the two steps by deblurring directly the noisy factors or partially denoised factors. The experimentation shows that in this way images with comparable regularized compression can be obtained with a lower computational cost.

Regularized compression of a noisy blurred image

P Favati;
2016

Abstract

Both regularization and compression are important issues in image processing and have been widely approached in the literature. The usual procedure to obtain the compression of an image given through a noisy blur requires two steps: first a deblurring step of the image and then a factorization step of the regularized image to get an approximation in terms of low rank nonnegative factors. We examine here the possibility of swapping the two steps by deblurring directly the noisy factors or partially denoised factors. The experimentation shows that in this way images with comparable regularized compression can be obtained with a lower computational cost.
2016
Istituto di informatica e telematica - IIT
Image Regularization
Image Compression
Nonnegativ e Matrix Factorization
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/328359
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact