We present a variational approach to gradient flows of energies of the form E = phi(1) - phi(2) where phi(1), phi(2) are convex functionals on a Hilbert space. A global parameter-dependent functional over trajectories is proved to admit minimizers. These minimizers converge up to subsequences to gradient-flow trajectories as the parameter tends to zero. These results apply in particular to the case of non lambda-convex energies E. The application of the abstract theory to classes of nonlinear parabolic equations with nonmonotone nonlinearities is presented.

A variational principle for gradient flows of nonconvex energies

U Stefanelli
2016

Abstract

We present a variational approach to gradient flows of energies of the form E = phi(1) - phi(2) where phi(1), phi(2) are convex functionals on a Hilbert space. A global parameter-dependent functional over trajectories is proved to admit minimizers. These minimizers converge up to subsequences to gradient-flow trajectories as the parameter tends to zero. These results apply in particular to the case of non lambda-convex energies E. The application of the abstract theory to classes of nonlinear parabolic equations with nonmonotone nonlinearities is presented.
2016
Istituto di Matematica Applicata e Tecnologie Informatiche - IMATI -
Evolution equations
gradient flow
nonconvex energy
variational formulation
File in questo prodotto:
File Dimensione Formato  
prod_364829-doc_152558.pdf

accesso aperto

Descrizione: A Variational Principle for Gradient Flows of Nonconvex Energies
Tipologia: Versione Editoriale (PDF)
Dimensione 358.02 kB
Formato Adobe PDF
358.02 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/328506
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 17
social impact