This article is concerned with the internal feedback stabilization of the phase field system of Cahn-Hilliard type, modeling the phase separation in a binary mixture. Under suitable assumptions on an arbitrarily fixed stationary solution, we construct via spectral separation arguments a feedback controller having its support in an arbitrary open subset of the space domain, such that the closed loop nonlinear system exponentially reaches the prescribed stationary solution. This feedback controller has a finite dimensional structure in the state space of solutions. In particular, every constant stationary solution is admissible.

Feedback stabilization of the Cahn-Hilliard type system for phase separation

P Colli;
2017

Abstract

This article is concerned with the internal feedback stabilization of the phase field system of Cahn-Hilliard type, modeling the phase separation in a binary mixture. Under suitable assumptions on an arbitrarily fixed stationary solution, we construct via spectral separation arguments a feedback controller having its support in an arbitrary open subset of the space domain, such that the closed loop nonlinear system exponentially reaches the prescribed stationary solution. This feedback controller has a finite dimensional structure in the state space of solutions. In particular, every constant stationary solution is admissible.
2017
Istituto di Matematica Applicata e Tecnologie Informatiche - IMATI -
Cahn-Hilliard system
Closed loop system
Feedback control
Stabilization
File in questo prodotto:
File Dimensione Formato  
prod_367170-doc_121417.pdf

accesso aperto

Descrizione: Feedback stabilization of the Cahn-Hilliard type system for phase separation
Tipologia: Versione Editoriale (PDF)
Dimensione 427.59 kB
Formato Adobe PDF
427.59 kB Adobe PDF Visualizza/Apri
prod_367170-doc_153466.pdf

solo utenti autorizzati

Descrizione: Feedback stabilization of the Cahn-Hilliard type system for phase separation
Tipologia: Versione Editoriale (PDF)
Dimensione 470.51 kB
Formato Adobe PDF
470.51 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/328584
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? ND
social impact