The aim of this work is to investigate, by means of numerical simulations, the influence of myocardial deformation due to muscle contraction and relaxation on the cardiac repolarization process in presence of transmural intrinsic action potential duration (APD) heterogeneities. The three-dimensional electromechanical model considered consists of the following four coupled components: the quasi-static transversely isotropic finite elasticity equations for the deformation of the cardiac tissue; the active tension model for the intracellular calcium dynamics and cross-bridge binding; the anisotropic Bidomain model for the electrical current flow through the deforming cardiac tissue; the membrane model of ventricular myocytes, including stretch-activated channels. The numerical simulations are based on our finite element parallel solver, which employs Multilevel Additive Schwarz preconditioners for the solution of the discretized Bidomain equations and Newton-Krylov methods for the solution of the discretized non-linear finite elasticity equations. Our findings show that: (i) the presence of intrinsic transmural cellular APD heterogeneities is not fully masked by electrotonic current flow or by the presence of the mechanical deformation; (ii) despite the presence of transmural APD heterogeneities, the recovery process follows the activation sequence and there is no significant transmural repolarization gradient; (iii) with or without transmural APD heterogeneities, epicardial electrograms always display the same wave shape and discordance between the polarity of QRS complex and T-wave; (iv) the main effects of the mechanical deformation are an increase of the dispersion of repolarization time and APD, when computed over the total cardiac domain and over the endo- and epicardial surfaces, while there is a slight decrease along the transmural direction.

Joint influence of transmural heterogeneities and wall deformation on cardiac bioelectrical activity: A simulation study

P Colli Franzone;
2016

Abstract

The aim of this work is to investigate, by means of numerical simulations, the influence of myocardial deformation due to muscle contraction and relaxation on the cardiac repolarization process in presence of transmural intrinsic action potential duration (APD) heterogeneities. The three-dimensional electromechanical model considered consists of the following four coupled components: the quasi-static transversely isotropic finite elasticity equations for the deformation of the cardiac tissue; the active tension model for the intracellular calcium dynamics and cross-bridge binding; the anisotropic Bidomain model for the electrical current flow through the deforming cardiac tissue; the membrane model of ventricular myocytes, including stretch-activated channels. The numerical simulations are based on our finite element parallel solver, which employs Multilevel Additive Schwarz preconditioners for the solution of the discretized Bidomain equations and Newton-Krylov methods for the solution of the discretized non-linear finite elasticity equations. Our findings show that: (i) the presence of intrinsic transmural cellular APD heterogeneities is not fully masked by electrotonic current flow or by the presence of the mechanical deformation; (ii) despite the presence of transmural APD heterogeneities, the recovery process follows the activation sequence and there is no significant transmural repolarization gradient; (iii) with or without transmural APD heterogeneities, epicardial electrograms always display the same wave shape and discordance between the polarity of QRS complex and T-wave; (iv) the main effects of the mechanical deformation are an increase of the dispersion of repolarization time and APD, when computed over the total cardiac domain and over the endo- and epicardial surfaces, while there is a slight decrease along the transmural direction.
2016
Istituto di Matematica Applicata e Tecnologie Informatiche - IMATI -
Cardiac Bidomain model
Electrograms
Electromechanical model
Mechano-electric feedback
Myocardial heterogeneity
Parallel finite element simulations
Repolarization sequence
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/328588
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? ND
social impact