Intense farming represents one of the main sources causing detriments to vital resources as lands and water, due to unsustainable agricultural practices and the resulting environmental pollution. Furthermore, the increasing world population and the impact of climate change contribute to worsen these constraints. To these regards, several attempts have been completed to provide pioneering technologies for facing against these challenges, including nanostructured (bio)sensors. Indeed, nanotechnology-based (bio)sensors, thanks to the exploitation of fascinating properties of functional materials at the nanoscale, can support farmers in delivering fast, accurate, cost-effective, and in field analyses of i) soil humidity, ii) water and soil nutrients/pesticides, and iii) plant pathogens. Herein, we report a glance of the nano nanostructured (bio)sensors developed to support smart agriculture, reporting representative examples form the literature of the last 10 years.

Nanostructured (Bio)Sensors For Smart Agriculture

AminaAntonacci;VivianaScognamiglio
2017

Abstract

Intense farming represents one of the main sources causing detriments to vital resources as lands and water, due to unsustainable agricultural practices and the resulting environmental pollution. Furthermore, the increasing world population and the impact of climate change contribute to worsen these constraints. To these regards, several attempts have been completed to provide pioneering technologies for facing against these challenges, including nanostructured (bio)sensors. Indeed, nanotechnology-based (bio)sensors, thanks to the exploitation of fascinating properties of functional materials at the nanoscale, can support farmers in delivering fast, accurate, cost-effective, and in field analyses of i) soil humidity, ii) water and soil nutrients/pesticides, and iii) plant pathogens. Herein, we report a glance of the nano nanostructured (bio)sensors developed to support smart agriculture, reporting representative examples form the literature of the last 10 years.
2017
Istituto di Cristallografia - IC
nanostructured (bio)sensors
nanomaterials
smart agriculture
soil physico-chemical parameters control
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/328701
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 128
  • ???jsp.display-item.citation.isi??? 80
social impact