In this paper we are concerned with the simulation of crowds in built environments, where obstacles play a role in the dynamics and in the interactions among pedestrians. First of all, we review the state-of-the-art of the techniques for handling obstacles in numerical simulations. Then, we introduce a new modeling technique which guarantees both impermeability and opacity of the obstacles, and does not require ad hoc runtime interventions to avoid collisions. Most important, we solve a complex optimization problem by means of the Particle Swarm Optimization method in order to exploit the so-called Braess's paradox. More precisely, we reduce the evacuation time from a room by adding in the walking area multiple obstacles optimally placed and shaped.

Handling obstacles in pedestrian simulations: Models and optimization

Emiliano Cristiani;Daniele Peri
2017

Abstract

In this paper we are concerned with the simulation of crowds in built environments, where obstacles play a role in the dynamics and in the interactions among pedestrians. First of all, we review the state-of-the-art of the techniques for handling obstacles in numerical simulations. Then, we introduce a new modeling technique which guarantees both impermeability and opacity of the obstacles, and does not require ad hoc runtime interventions to avoid collisions. Most important, we solve a complex optimization problem by means of the Particle Swarm Optimization method in order to exploit the so-called Braess's paradox. More precisely, we reduce the evacuation time from a room by adding in the walking area multiple obstacles optimally placed and shaped.
2017
Istituto Applicazioni del Calcolo ''Mauro Picone''
Pedestrian modeling
Conservation la
Obstacles
Constraints
Particle Swarm Optimization
Evacuation
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/328782
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 50
  • ???jsp.display-item.citation.isi??? ND
social impact