In this work, we present a comparison among four different piezoelectric materials (PVDF-TrFE, Piezopaint, AlN and ZnO), all deposited at low temperature (from RT up to 160 degrees C) on flexible substrate such as thin Polyimide, in order to investigate their possible implementation as flexible tactile sensors. Flexible capacitive sensors were tested by using a mini-shaker, investigating the sensors behavior in force and frequency with the intent of mimicking the human sense of touch. We optimized the piezoelectric properties of the materials by using specific texturing buffer layers or maximizing the poling procedure to increase the dipole alignment. Finally, by using a multi-foil approach, the different sensors have been integrated with polysilicon thin film transistor fabricated on flexible substrates and the specific device sensitivity was evaluated.

Comparison Among Low Temperature Piezoelectric Flexible Sensors Based on Polysilicon TFTs for Advanced Tactile Sensing on Plastic

Maiolo Luca;Maita Francesco;Pecora Alessandro;Fortunato Guglielmo;Smecca Emanuele;Alberti Alessandra
2016

Abstract

In this work, we present a comparison among four different piezoelectric materials (PVDF-TrFE, Piezopaint, AlN and ZnO), all deposited at low temperature (from RT up to 160 degrees C) on flexible substrate such as thin Polyimide, in order to investigate their possible implementation as flexible tactile sensors. Flexible capacitive sensors were tested by using a mini-shaker, investigating the sensors behavior in force and frequency with the intent of mimicking the human sense of touch. We optimized the piezoelectric properties of the materials by using specific texturing buffer layers or maximizing the poling procedure to increase the dipole alignment. Finally, by using a multi-foil approach, the different sensors have been integrated with polysilicon thin film transistor fabricated on flexible substrates and the specific device sensitivity was evaluated.
2016
AlN
piezoelectric sensors
Piezopaint
polysilicon TFTs
PVDF-TrFE
ultra-thin polyimide
ZnO
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/329029
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 14
social impact