Hybridization of two fluorescent BODIPY dyes in a microcavity is achieved by coupling different exciton transitions to the same cavity mode. We characterize the luminescence of such a hybrid system following nonresonant laser excitation and show that the relative population along the different polariton branches can be controlled by changing cavity detuning. This effect is used to enhance exciton energy transfer to states along the lower polariton branch in negatively detuned cavities. We compare the efficiency of energy transfer via exciton hybridization with that achieved by dipole-dipole coupling.

Control over Energy Transfer between Fluorescent BODIPY Dyes in a Strongly Coupled Microcavity

Cavazzini;Marco;
2018

Abstract

Hybridization of two fluorescent BODIPY dyes in a microcavity is achieved by coupling different exciton transitions to the same cavity mode. We characterize the luminescence of such a hybrid system following nonresonant laser excitation and show that the relative population along the different polariton branches can be controlled by changing cavity detuning. This effect is used to enhance exciton energy transfer to states along the lower polariton branch in negatively detuned cavities. We compare the efficiency of energy transfer via exciton hybridization with that achieved by dipole-dipole coupling.
2018
Istituto di Scienze e Tecnologie Molecolari - ISTM - Sede Milano
fluorescent molecules
hybridization
microcavities
polaritons
radiative pumping
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/329229
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact