Among the different pharmaceuticals present in soil and water ecosystems as micro-contaminants, considerable attention has been paid to antibiotics, since their increasing use and the consequent development of multi-resistant bacteria pose serious risks to human and veterinary health. Moreover, once they have entered the environment, antibiotics can affect natural microbial communities. The latter play a key role in fundamental ecological processes, most importantly the maintenance of soil and water quality. In fact, they are involved in biogeochemical cycling and organic contaminant degradation thanks to their large reservoir of genetic diversity and metabolic capability. When antibiotics occur in the environment, they can hamper microbial community structure and functioning in different ways and have both direct (short-term) and indirect (long-term) effects on microbial communities. The short-term ones are bactericide and bacteriostatic actions with a consequent disappearance of some microbial populations and their ecological functioning. The indirect impact includes the development of antibiotic resistant bacteria and in some cases bacterial strains able to degrade them by metabolic or co-metabolic processes. Biodegradation makes it possible to completely remove a toxic compound from the environment if it is mineralized.Several factors can influence the significance of such direct and indirect effects, including the antibiotic's concentration, the exposure time, the receiving ecosystem (e.g. soil or water) and the co-occurrence of other antibiotics and/or other contaminants.This review describes the current state of knowledge regarding the effects of antibiotics on natural microbial communities in soil and water ecosystems

Ecological effects of antibiotics on natural ecosystems: A review

Grenni P
Primo
;
Ancona V;Barra Caracciolo A
Ultimo
2018

Abstract

Among the different pharmaceuticals present in soil and water ecosystems as micro-contaminants, considerable attention has been paid to antibiotics, since their increasing use and the consequent development of multi-resistant bacteria pose serious risks to human and veterinary health. Moreover, once they have entered the environment, antibiotics can affect natural microbial communities. The latter play a key role in fundamental ecological processes, most importantly the maintenance of soil and water quality. In fact, they are involved in biogeochemical cycling and organic contaminant degradation thanks to their large reservoir of genetic diversity and metabolic capability. When antibiotics occur in the environment, they can hamper microbial community structure and functioning in different ways and have both direct (short-term) and indirect (long-term) effects on microbial communities. The short-term ones are bactericide and bacteriostatic actions with a consequent disappearance of some microbial populations and their ecological functioning. The indirect impact includes the development of antibiotic resistant bacteria and in some cases bacterial strains able to degrade them by metabolic or co-metabolic processes. Biodegradation makes it possible to completely remove a toxic compound from the environment if it is mineralized.Several factors can influence the significance of such direct and indirect effects, including the antibiotic's concentration, the exposure time, the receiving ecosystem (e.g. soil or water) and the co-occurrence of other antibiotics and/or other contaminants.This review describes the current state of knowledge regarding the effects of antibiotics on natural microbial communities in soil and water ecosystems
2018
Istituto di Ricerca Sulle Acque - IRSA
antibiotic effects;
natural microbial communities
biodegradation
antibiotic resistance genes
File in questo prodotto:
File Dimensione Formato  
prod_366855-doc_126982.pdf

solo utenti autorizzati

Descrizione: Ecological effects of antibiotics on natural ecosystems: A review
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 881.59 kB
Formato Adobe PDF
881.59 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/329589
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 978
  • ???jsp.display-item.citation.isi??? 849
social impact