We describe an algorithm for minimizing convex, not necessarily smooth, functions of several variables, based on a descent direction finding procedure that inherits some characteristics both of standard bundle method and of Wolfe's conjugate subgradient method. This is obtained by allowing appropriate upward shifting of the affine approximations of the objective function which contribute to the classic definition of the cutting plane function. The algorithm embeds a proximity control strategy. Finite termination is proved at a point satisfying an approximate optimality condition and some numerical results are provided.

A method for convex minimization based on translated first-order approximations

Astorino A;
2017

Abstract

We describe an algorithm for minimizing convex, not necessarily smooth, functions of several variables, based on a descent direction finding procedure that inherits some characteristics both of standard bundle method and of Wolfe's conjugate subgradient method. This is obtained by allowing appropriate upward shifting of the affine approximations of the objective function which contribute to the classic definition of the cutting plane function. The algorithm embeds a proximity control strategy. Finite termination is proved at a point satisfying an approximate optimality condition and some numerical results are provided.
2017
Istituto di Calcolo e Reti ad Alte Prestazioni - ICAR
Bundle methods; Convex optimization; Nonsmooth optimization
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/330453
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 4
social impact