Technological advances throughout different fields of research have enhanced our understanding of biodiversity, especially for meiofaunal organisms, which are notoriously difficult to study because of their small size. Scanning and transmission electron microscopy, together with confocal laser scanning microscopy, has increased the amount of external and internal morphological information, improving the quantity and quality of species descriptions, as well as deepening our understanding of the evolutionary adaptations of meiofauna. In ecology, the characterization of molecules such as stable isotopes and fatty acids have permitted us to infer trophic niches of meiofauna species, enhancing our understanding of their functional role in the ecosystem. In parallel, advances in DNA sequencing techniques have allowed us to quantify with much higher accuracy the phylogenetic position of meiofaunal species. We here review the main biodiversity shortfalls in the studies of meiofauna, discussing how such shortfalls could be addressed, especially by merging different approaches. Important steps towards such interdisciplinary approach are to promote data sharing, to explore new technologies that combine disciplines, and to base studies on a clear theoretical framework. Working at the interface between different disciplines imposes several challenges and will require creative approaches, but well-designed studies making use of different methodologies will quickly contribute to address the main biodiversity shortfalls in the study of meiofauna.

Addressing biodiversity shortfalls in meiofauna

2018

Abstract

Technological advances throughout different fields of research have enhanced our understanding of biodiversity, especially for meiofaunal organisms, which are notoriously difficult to study because of their small size. Scanning and transmission electron microscopy, together with confocal laser scanning microscopy, has increased the amount of external and internal morphological information, improving the quantity and quality of species descriptions, as well as deepening our understanding of the evolutionary adaptations of meiofauna. In ecology, the characterization of molecules such as stable isotopes and fatty acids have permitted us to infer trophic niches of meiofauna species, enhancing our understanding of their functional role in the ecosystem. In parallel, advances in DNA sequencing techniques have allowed us to quantify with much higher accuracy the phylogenetic position of meiofaunal species. We here review the main biodiversity shortfalls in the studies of meiofauna, discussing how such shortfalls could be addressed, especially by merging different approaches. Important steps towards such interdisciplinary approach are to promote data sharing, to explore new technologies that combine disciplines, and to base studies on a clear theoretical framework. Working at the interface between different disciplines imposes several challenges and will require creative approaches, but well-designed studies making use of different methodologies will quickly contribute to address the main biodiversity shortfalls in the study of meiofauna.
2018
Istituto di Ricerca Sulle Acque - IRSA
Istituto di Ricerca sugli Ecosistemi Terrestri - IRET
morphology
metabarcoding
stable isotopes
data sharing
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/330509
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact