Hemodialysis (HD) is nowadays the most common therapy to treat renal insufficiency. However, despite the improvements made in the last years, HD is still associated with a non-negligible rate of co-morbidities, which could be reduced by means of an appropriate treatment customization. Many differential multi-compartment models have been developed to describe solute kinetics during HD, to optimize treatments, and to prevent intra-dialysis complications; however, they often refer to an average uremic patient. On the contrary, the clinical need for customization requires patient-specific models. In this work, assuming that the customization can be obtained by means of patient-specific model parameters, we propose a Bayesian approach to estimate the patient-specific parameters of a multi-compartment model and to predict the single patient's response to the treatment, in order to prevent intra-dialysis complications. The likelihood function is obtained through a discretized version of a multi-compartment model, where the discretization is in terms of a Runge-Kutta method to guarantee the convergence, and the posterior densities of model parameters are obtained through Markov Chain Monte Carlo simulation.

Identification of patient-specific parameters in a kinetic model of fluid and mass transfer during dialysis

E Lanzarone;
2017

Abstract

Hemodialysis (HD) is nowadays the most common therapy to treat renal insufficiency. However, despite the improvements made in the last years, HD is still associated with a non-negligible rate of co-morbidities, which could be reduced by means of an appropriate treatment customization. Many differential multi-compartment models have been developed to describe solute kinetics during HD, to optimize treatments, and to prevent intra-dialysis complications; however, they often refer to an average uremic patient. On the contrary, the clinical need for customization requires patient-specific models. In this work, assuming that the customization can be obtained by means of patient-specific model parameters, we propose a Bayesian approach to estimate the patient-specific parameters of a multi-compartment model and to predict the single patient's response to the treatment, in order to prevent intra-dialysis complications. The likelihood function is obtained through a discretized version of a multi-compartment model, where the discretization is in terms of a Runge-Kutta method to guarantee the convergence, and the posterior densities of model parameters are obtained through Markov Chain Monte Carlo simulation.
2017
Istituto di Matematica Applicata e Tecnologie Informatiche - IMATI -
978-3-319-54083-2
Hemodialysis; Patient-specific response; Multi-compartment model; Runge-Kutta discretization; Markov Chain Monte Carlo
File in questo prodotto:
File Dimensione Formato  
prod_370985-doc_152773.pdf

solo utenti autorizzati

Descrizione: Identification of patient-specific parameters in a kinetic model of fluid and mass transfer during dialysis
Tipologia: Versione Editoriale (PDF)
Dimensione 8.78 MB
Formato Adobe PDF
8.78 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/330532
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact