In this contribution, we report the first successful baker's yeast reduction of arylpropanones using deep eutectic solvents (DESs) as biodegradable and non-hazardous co-solvents. The nature of DES [e.g. choline chloride/glycerol (2:1)] and the percentage of water in the mixture proved to be critical for both the reversal of selectivity and to achieve high enantioselectivity on going from pure water (up to 98:2 er in favour of the S-enantiomer) to DES/aqueous mixtures (up to 98:2 er in favour of the R-enantiomer). As a result, both enantiomers of valuable chiral alcohols of pharmaceutical interest were prepared from the same biocatalyst by simply switching the solvent. The possible inhibition of some (S)-oxidoreductases making part of the genome of such a wild-type whole cell biocatalyst when DESs are used as co-solvents may pave the way for an anti-Prelog reduction. The scope and limitations of this kind of biotransformations for a range of aryl-containing ketones are also discussed. (Figure presented.).
Unveiling the Hidden Performance of Whole Cells in the Asymmetric Bioreduction of Aryl-containing Ketones in Aqueous Deep Eutectic Solvents
Cardellicchio C;
2017
Abstract
In this contribution, we report the first successful baker's yeast reduction of arylpropanones using deep eutectic solvents (DESs) as biodegradable and non-hazardous co-solvents. The nature of DES [e.g. choline chloride/glycerol (2:1)] and the percentage of water in the mixture proved to be critical for both the reversal of selectivity and to achieve high enantioselectivity on going from pure water (up to 98:2 er in favour of the S-enantiomer) to DES/aqueous mixtures (up to 98:2 er in favour of the R-enantiomer). As a result, both enantiomers of valuable chiral alcohols of pharmaceutical interest were prepared from the same biocatalyst by simply switching the solvent. The possible inhibition of some (S)-oxidoreductases making part of the genome of such a wild-type whole cell biocatalyst when DESs are used as co-solvents may pave the way for an anti-Prelog reduction. The scope and limitations of this kind of biotransformations for a range of aryl-containing ketones are also discussed. (Figure presented.).I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


