Nowadays, it is important to understand how to combine energy efficiency and the point of view of resilience. Regarding buildings, resilience represents the ability to recover from or adapt to an unfavorable condition or event, maintaining their own functionality and performances. This issue has been ignored for several years, especially in building sector, but the impacts of natural hazards and climate change are becoming more and more influential and frequent. Moreover, urban areas are responsible of a great part of global energy consumption and CO2 emissions, in addition to the intensification of greenhouse effect. For this reason, the use of new technologies (PCM and cool materials) for buildings can affect not only indoor microclimate, but also urban environment. Starting from the dynamic simulations of common buildings in South of Italy and then in other hotter Mediterranean climate (Athens, Tunis), the research analyses various typologies of these materials and possible combined applications. The aim of the study is to understand, through a set of proper indicators, how they can contribute to enhance energy performance of buildings and climate resilience in order to face rising temperatures also at neighbourhood level.

Energy Efficiency and Resilience against Increasing Temperatures in Summer: the Use of PCM and Cool Materials in Buildings

Paola Lassandro;Silvia Di Turi
2017

Abstract

Nowadays, it is important to understand how to combine energy efficiency and the point of view of resilience. Regarding buildings, resilience represents the ability to recover from or adapt to an unfavorable condition or event, maintaining their own functionality and performances. This issue has been ignored for several years, especially in building sector, but the impacts of natural hazards and climate change are becoming more and more influential and frequent. Moreover, urban areas are responsible of a great part of global energy consumption and CO2 emissions, in addition to the intensification of greenhouse effect. For this reason, the use of new technologies (PCM and cool materials) for buildings can affect not only indoor microclimate, but also urban environment. Starting from the dynamic simulations of common buildings in South of Italy and then in other hotter Mediterranean climate (Athens, Tunis), the research analyses various typologies of these materials and possible combined applications. The aim of the study is to understand, through a set of proper indicators, how they can contribute to enhance energy performance of buildings and climate resilience in order to face rising temperatures also at neighbourhood level.
2017
Istituto per le Tecnologie della Costruzione - ITC
Climate change Resilience
PCM
Cool materials
Cooling energy saving
Retrofit.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/330597
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact