The high toxicity of cyanide, along with its widespread industrial use, has fuelled interest in the development of analytical methods for its determination in complex matrices. In this study, we propose a novel approach for the measurement of total cyanide in soil samples based on single-step derivatization with pentafluorobenzyl bromide (F5Bn-Br) followed by quantitation with gas chromatography mass spectrometry in negative chemical ionization mode. The reaction between CN- and F5Bn-Br resulted in the identification of several derivatives such as F5Bn-CN, (F5Bn)(F5Ph)CH-CN, and (F5Bn)2(F5Ph)C-CN. The relative proportion between such compounds was dependent on experimental conditions. When a 100 ?L aliquot of an alkaline-aqueous extract was reacted with 700 ?L of 1.3% F5Bn-Br in acetone, the tri-alkylated derivative was the most abundant. In such conditions a detection limit of 0.5 ng/g of CN- was attained. Soil samples were initially spiked with an alkaline solution of K13C15N internal standard and suspended in 7.5% aqueous NaOH. Determination of total cyanide was achieved by digestion of the alkaline extract with H3PO4 to produce HCN which was then trapped in 0.1% NaOH in a sealed double vial system, followed by reaction with F5Bn-Br. Isotope dilution calibration was chosen for quantitation, and the validity of the novel method was demonstrated by analysis of soil Certified Reference Materials (CRMs) and by spike recovery tests.

Determination of total cyanide in soil by isotope dilution GC/MS following pentafluorobenzyl derivatization

Campanella B;Onor M;Bramanti E;
2017

Abstract

The high toxicity of cyanide, along with its widespread industrial use, has fuelled interest in the development of analytical methods for its determination in complex matrices. In this study, we propose a novel approach for the measurement of total cyanide in soil samples based on single-step derivatization with pentafluorobenzyl bromide (F5Bn-Br) followed by quantitation with gas chromatography mass spectrometry in negative chemical ionization mode. The reaction between CN- and F5Bn-Br resulted in the identification of several derivatives such as F5Bn-CN, (F5Bn)(F5Ph)CH-CN, and (F5Bn)2(F5Ph)C-CN. The relative proportion between such compounds was dependent on experimental conditions. When a 100 ?L aliquot of an alkaline-aqueous extract was reacted with 700 ?L of 1.3% F5Bn-Br in acetone, the tri-alkylated derivative was the most abundant. In such conditions a detection limit of 0.5 ng/g of CN- was attained. Soil samples were initially spiked with an alkaline solution of K13C15N internal standard and suspended in 7.5% aqueous NaOH. Determination of total cyanide was achieved by digestion of the alkaline extract with H3PO4 to produce HCN which was then trapped in 0.1% NaOH in a sealed double vial system, followed by reaction with F5Bn-Br. Isotope dilution calibration was chosen for quantitation, and the validity of the novel method was demonstrated by analysis of soil Certified Reference Materials (CRMs) and by spike recovery tests.
2017
Istituto di Chimica dei Composti OrganoMetallici - ICCOM -
Cyanide
Gas chromatography-mass spectrometry
Isotope dilution
Pentafluorobenzyl bromide
Soil
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/330618
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 14
social impact