The class of Bipartite Distance Hereditary (BDH) graphs is the intersection between bipartite domino-free and chordal bipartite graphs. Graphs in both the latter classes have linearly many maximal bicliques, implying the existence of polynomial-time algorithms for computing the associated Galois lattice. Such a lattice can indeed be built in O(m?n)O(m?n)worst-case time for a domino-free graph with mm edges and nn vertices. In Apollonio et al. (2015), BDH graphs have been characterized as those bipartite graphs whose Galois lattice is tree-like. In this paper we give a sharp upper bound on the number of maximal bicliques of a BDH graph and we provide an O(m)O(m) time-worst-case algorithm for incrementally computing its Galois lattice. The algorithm in turn implies a constructive proof of the if part of the characterization above. Moreover, we give an O(n)O(n) worst-case space and time encoding of both the input graph and its Galois lattice, provided that the reverse of a Bandelt and Mulder building sequence is given.

On computing the Galois Lattice of Bipartite Distance Hereditary graphs

Nicola Apollonio;
2017

Abstract

The class of Bipartite Distance Hereditary (BDH) graphs is the intersection between bipartite domino-free and chordal bipartite graphs. Graphs in both the latter classes have linearly many maximal bicliques, implying the existence of polynomial-time algorithms for computing the associated Galois lattice. Such a lattice can indeed be built in O(m?n)O(m?n)worst-case time for a domino-free graph with mm edges and nn vertices. In Apollonio et al. (2015), BDH graphs have been characterized as those bipartite graphs whose Galois lattice is tree-like. In this paper we give a sharp upper bound on the number of maximal bicliques of a BDH graph and we provide an O(m)O(m) time-worst-case algorithm for incrementally computing its Galois lattice. The algorithm in turn implies a constructive proof of the if part of the characterization above. Moreover, we give an O(n)O(n) worst-case space and time encoding of both the input graph and its Galois lattice, provided that the reverse of a Bandelt and Mulder building sequence is given.
2017
Istituto Applicazioni del Calcolo ''Mauro Picone''
Bipartite graphs; Distance hereditary graphs; Maximal bicliques; Galois lattices
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/330631
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact