In the present paper we develop a new family of Virtual Elements for the Stokes problem on polygonal meshes. By a proper choice of the Virtual space of velocities and the associated degrees of freedom, we can guarantee that the final discrete velocity is pointwise divergence-free, and not only in a relaxed (projected) sense, as it happens for more standard elements. Moreover, we show that the discrete problem is immediately equivalent to a reduced problem with fewer degrees of freedom, thus yielding a very efficient scheme. We provide a rigorous error analysis of the method and several numerical tests, including a comparison with a different Virtual Element choice.

Divergence free virtual elements for the Stokes problem on polygonal meshes

L Beirao Da Veiga;C Lovadina;
2017

Abstract

In the present paper we develop a new family of Virtual Elements for the Stokes problem on polygonal meshes. By a proper choice of the Virtual space of velocities and the associated degrees of freedom, we can guarantee that the final discrete velocity is pointwise divergence-free, and not only in a relaxed (projected) sense, as it happens for more standard elements. Moreover, we show that the discrete problem is immediately equivalent to a reduced problem with fewer degrees of freedom, thus yielding a very efficient scheme. We provide a rigorous error analysis of the method and several numerical tests, including a comparison with a different Virtual Element choice.
2017
Istituto di Matematica Applicata e Tecnologie Informatiche - IMATI -
Divergence free approximation
Polygonal meshes
Stokes problem
Virtual element method
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/330701
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 233
  • ???jsp.display-item.citation.isi??? ND
social impact