In the present work, two different types of heat exchangers are experimentally compared, namely a fin-and-tubes custom made HEX and a commercial asymmetric plate heat exchanger, for the application with phase change materials. In particular, the two devices were tested in a specifically designed testing rig located at CNR-ITAE and suitable for the characterization of thermal energy storages. The testing bench allows simulating a heat source up to 100°C (e.g. solar thermal collectors, low-grade waste heat) and to set the desired discharge temperature in the range 20°C-80°C. The phase change material with which the exchangers were filled, is a commercial paraffin (Plus ICE A82), having a nominal melting temperature of 82°C. The experimental results on charge and discharge tests, realized with the same protocol, were used for a comparison of the systems, through the identification of suitable performance figures and Key Performance Indicators, such as material-to-metal ratio, heat storage density, maximum and average power achievable and effectiveness of the system. The results show that, for the tested material, characterised by a very low thermal conductivity (i.e. about 0.2 W/mK), the selected plate heat exchanger allows a better exploitation of the heat stored inside the material, letting at the same time to reach a power output in the range 1-10 kW.
Experimental comparison of two heat exchanger concepts for latent heat storage applications
Andrea Frazzica;Valeria Palomba;Davide La Rosa;Vincenza Brancato
2017
Abstract
In the present work, two different types of heat exchangers are experimentally compared, namely a fin-and-tubes custom made HEX and a commercial asymmetric plate heat exchanger, for the application with phase change materials. In particular, the two devices were tested in a specifically designed testing rig located at CNR-ITAE and suitable for the characterization of thermal energy storages. The testing bench allows simulating a heat source up to 100°C (e.g. solar thermal collectors, low-grade waste heat) and to set the desired discharge temperature in the range 20°C-80°C. The phase change material with which the exchangers were filled, is a commercial paraffin (Plus ICE A82), having a nominal melting temperature of 82°C. The experimental results on charge and discharge tests, realized with the same protocol, were used for a comparison of the systems, through the identification of suitable performance figures and Key Performance Indicators, such as material-to-metal ratio, heat storage density, maximum and average power achievable and effectiveness of the system. The results show that, for the tested material, characterised by a very low thermal conductivity (i.e. about 0.2 W/mK), the selected plate heat exchanger allows a better exploitation of the heat stored inside the material, letting at the same time to reach a power output in the range 1-10 kW.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.