We report on a novel lithographic approach for the fabrication of integrated quantum dot (QD)-photonic crystal (PhC) nanocavity systems. We exploit unique hydrogen's ability to tailor the band gap energy of dilute nitride semiconductors to fabricate isolated site-controlled QDs via a spatially selective hydrogenation at the nanometer-scale. A deterministic integration of the realized site-controlled QDs with PhC nanocavities is provided by the inherent realignment precision (~ 20 nm) of the electron beam lithography system used for the fabrication of both QDs and PhC cavities. A detailed description of the fabrication steps leading to the realization of integrated QD-PhC cavity systems is provided, together with the experimental evidence of a weak coupling effect between the single-photon emitter and the PhC cavity.
A lithographic approach for quantum dot-photonic crystal nanocavity coupling in dilute nitrides
Pettinari G;Gerardino A;Businaro L;Rubini S;
2017
Abstract
We report on a novel lithographic approach for the fabrication of integrated quantum dot (QD)-photonic crystal (PhC) nanocavity systems. We exploit unique hydrogen's ability to tailor the band gap energy of dilute nitride semiconductors to fabricate isolated site-controlled QDs via a spatially selective hydrogenation at the nanometer-scale. A deterministic integration of the realized site-controlled QDs with PhC nanocavities is provided by the inherent realignment precision (~ 20 nm) of the electron beam lithography system used for the fabrication of both QDs and PhC cavities. A detailed description of the fabrication steps leading to the realization of integrated QD-PhC cavity systems is provided, together with the experimental evidence of a weak coupling effect between the single-photon emitter and the PhC cavity.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.