Active and passive optical waveguides are fundamental elements in modern telecommunications systems. A great number of optical crystals and glasses were identified and are used as good optoelectronic materials. However, fabrication of waveguides in some of those materials remains still a challenging task due to their susceptibility to mechanical or chemical damages during processing. Ion beam has been used for such purposes, along with other emerging techniques, like direct pulsed laser writing. Passive and active planar and channel optical waveguides, and optical Bragg gratings were fabricated in various glasses (like Er: TeO2-WO3 glass) and undoped and doped crystals, Bi4Ge3O12, Bi12GeO20) using masked or unmasked macrobeams or microbeams of light and medium-sized ions (C, N, O) in the 1.5 - 11 MeV energy range. Functionality of the optical elements was tested by m-line spectroscopy and end fire coupling technique. Structural changes in the implanted samples were studied by various optical microscopic techniques, spectroscopic ellipsometry, Rutherford backscattering and microscopic Raman spectroscopy. The results show that it is possible to produce integrated optical elements of unique properties using ion beam techniques

The use of ion beam techniques for the fabrication of integrated optical elements

Berneschi S;NunziConti G;Pelli S;Pelli S;
2016

Abstract

Active and passive optical waveguides are fundamental elements in modern telecommunications systems. A great number of optical crystals and glasses were identified and are used as good optoelectronic materials. However, fabrication of waveguides in some of those materials remains still a challenging task due to their susceptibility to mechanical or chemical damages during processing. Ion beam has been used for such purposes, along with other emerging techniques, like direct pulsed laser writing. Passive and active planar and channel optical waveguides, and optical Bragg gratings were fabricated in various glasses (like Er: TeO2-WO3 glass) and undoped and doped crystals, Bi4Ge3O12, Bi12GeO20) using masked or unmasked macrobeams or microbeams of light and medium-sized ions (C, N, O) in the 1.5 - 11 MeV energy range. Functionality of the optical elements was tested by m-line spectroscopy and end fire coupling technique. Structural changes in the implanted samples were studied by various optical microscopic techniques, spectroscopic ellipsometry, Rutherford backscattering and microscopic Raman spectroscopy. The results show that it is possible to produce integrated optical elements of unique properties using ion beam techniques
2016
Istituto di Fisica Applicata - IFAC
9781509014675
channel waveguide
focussed ion beam
integrated optics
ion implantation
optical Bragg grating
planar waveguide
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/331074
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact