The stationary/nonstationary regimes of time series generated by the discrete version of the Ornstein-Uhlenbeck equation are studied by using the detrended fluctuation analysis. Our findings point out to the prevalence of the drift parameter in determining the crossover time between the nonstationary and stationary regimes. The fluctuation functions coincide in the nonstationary regime for a constant diffusion parameter, and in the stationary regime for a constant ratio between the drift and diffusion stochastic forces. In the generalized Ornstein-Uhlenbeck equations, the Hurst exponent H influences the crossover time that increases with the decrease of H. Published by AIP Publishing.
Detrended fluctuation analysis of the Ornstein-Uhlenbeck process: Stationarity versus nonstationarity
Telesca;
2016
Abstract
The stationary/nonstationary regimes of time series generated by the discrete version of the Ornstein-Uhlenbeck equation are studied by using the detrended fluctuation analysis. Our findings point out to the prevalence of the drift parameter in determining the crossover time between the nonstationary and stationary regimes. The fluctuation functions coincide in the nonstationary regime for a constant diffusion parameter, and in the stationary regime for a constant ratio between the drift and diffusion stochastic forces. In the generalized Ornstein-Uhlenbeck equations, the Hurst exponent H influences the crossover time that increases with the decrease of H. Published by AIP Publishing.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


