We solve the problem of integrating operator equations for the dynamics of nonautonomous quantum systems by using time-dependent canonical transformations. The studied operator equations essentially reproduce the classical integrability conditions at the quantum level in the basic cases of one-dimensional nonautonomous dynamical systems. We seek solutions in the form of operator series in the Bender-Dunne basis of pseudodifferential operators. Together with this problem, we consider quantum canonical transformations. The minimal solution of the operator equation in the representation of the basis at a fixed time corresponds to the lowest-order contribution of the solution obtained as a result of applying a canonical linear transformation to the basis elements.
Nonautonomous Hamiltonian quantum systems, operator equations, and representations of the Bender-Dunne Weyl-ordered basis under time-dependent canonical transformationstransformations
M Gianfreda;
2017
Abstract
We solve the problem of integrating operator equations for the dynamics of nonautonomous quantum systems by using time-dependent canonical transformations. The studied operator equations essentially reproduce the classical integrability conditions at the quantum level in the basic cases of one-dimensional nonautonomous dynamical systems. We seek solutions in the form of operator series in the Bender-Dunne basis of pseudodifferential operators. Together with this problem, we consider quantum canonical transformations. The minimal solution of the operator equation in the representation of the basis at a fixed time corresponds to the lowest-order contribution of the solution obtained as a result of applying a canonical linear transformation to the basis elements.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


