The need of smart information retrieval systems is in contrast with the difficulties to deal with huge amount of data. In this paper we present a Big Data Analytics architecture used to implement a semantic similarity search tool for natural language texts in biomedical domain. The implemented methodology is based on Word Embeddings (WEs) models obtained using the word2vec algorithm. The system has been assessed with documents extracted from the whole PubMed library. It will be also presented a user friendly web front-end able to assess the methodology on a real context.

A Big Data architecture for knowledge discovery in PubMed articles

Francesco Gargiulo;Stefano Silvestri;Mario Ciampi
2017

Abstract

The need of smart information retrieval systems is in contrast with the difficulties to deal with huge amount of data. In this paper we present a Big Data Analytics architecture used to implement a semantic similarity search tool for natural language texts in biomedical domain. The implemented methodology is based on Word Embeddings (WEs) models obtained using the word2vec algorithm. The system has been assessed with documents extracted from the whole PubMed library. It will be also presented a user friendly web front-end able to assess the methodology on a real context.
2017
Istituto di Calcolo e Reti ad Alte Prestazioni - ICAR
Big Data Analytics
Natural Language Processing
Word Embeddings
SPARK
PubMed
Semantic Similarity Search
Bio-Medical Literature
Semantic Similarity Search
Semantics
File in questo prodotto:
File Dimensione Formato  
prod_375383-doc_126462.pdf

non disponibili

Descrizione: A Big Data architecture for knowledge discovery in PubMed articles
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 751.77 kB
Formato Adobe PDF
751.77 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/331536
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? ND
social impact