The software architecture is composed by a web application (BIS client) and a web service (BIS service). The former can be accessed using a common browser and presents in a user-friendly way the core functionalities supplied by the latter. Underneath, the two components interact through the means of an HTTP API based on the LCML-based data model; the BIS service makes use of a geo-database to store georeferenced data and a native XML database to store and transform the LCML collections according to the user requests. The LCML-based data model is encoded using XML schema, in order to leverage the query capabilities of a native XML database (e.g. XQuery, XPath). The use of native XML technologies seems a reasonable choice to enable the system scaling, maintaining unaltered the full set of information that is available in LCCS3/LCML. Future steps of this work include the application of BIS functionalities on even larger LCCS3 legends (e.g. output of automatic classification systems).

An Object-Oriented Method to Assess Semantic Similarity between LCML based Legends

2017

Abstract

The software architecture is composed by a web application (BIS client) and a web service (BIS service). The former can be accessed using a common browser and presents in a user-friendly way the core functionalities supplied by the latter. Underneath, the two components interact through the means of an HTTP API based on the LCML-based data model; the BIS service makes use of a geo-database to store georeferenced data and a native XML database to store and transform the LCML collections according to the user requests. The LCML-based data model is encoded using XML schema, in order to leverage the query capabilities of a native XML database (e.g. XQuery, XPath). The use of native XML technologies seems a reasonable choice to enable the system scaling, maintaining unaltered the full set of information that is available in LCCS3/LCML. Future steps of this work include the application of BIS functionalities on even larger LCCS3 legends (e.g. output of automatic classification systems).
2017
land cover classification
lcml
lccs3
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/331574
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact