Clinical summarization means the collection and synthesis of a patient's significant data, undertaken in order to support health-care providers in the process of patient care. Considering that medical information comes from multiple sources, a system for the automatic generation of problem lists could prove to be very effective in terms of saving time in the analysis of large amounts of medical data. In this paper, we propose a system able to acquire and present relevant references to medical disorders from a patient's history, producing a subject-oriented summary. The implemented system relies on an NLP pipeline, for the extraction of relevant medical entities contained in narrative health records, and on several queries, necessary for the scanning of structured documents. The tool aggregates any medical problems, performed procedures, and prescribed medications, providing the healthcare practitioner with a visual summary of the patient's data.
A novel system for the automatic extraction of a patient problem summary
Crescenzo Diomaiuta;Maria Mercorella;Mario Ciampi;Giuseppe De Pietro
2017
Abstract
Clinical summarization means the collection and synthesis of a patient's significant data, undertaken in order to support health-care providers in the process of patient care. Considering that medical information comes from multiple sources, a system for the automatic generation of problem lists could prove to be very effective in terms of saving time in the analysis of large amounts of medical data. In this paper, we propose a system able to acquire and present relevant references to medical disorders from a patient's history, producing a subject-oriented summary. The implemented system relies on an NLP pipeline, for the extraction of relevant medical entities contained in narrative health records, and on several queries, necessary for the scanning of structured documents. The tool aggregates any medical problems, performed procedures, and prescribed medications, providing the healthcare practitioner with a visual summary of the patient's data.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.