An important goal of collective robotics is the design of control systems that allow groups of robots to accomplish common tasks by coordinating without a centralized control. In this paper, we study how a group of physically assembled robots can display coherent behavior on the basis of a simple neural controller that has access only to local sensory information. This controller is synthesized through artificial evolution in a simulated environment in order to let the robots display coordinated-motion behaviors. The evolved controller proves to be robust enough to allow a smooth transfer from simulated to real robots. Additionally, it generalizes to new experimental conditions, such as different sizes/shapes of the group and/or different connection mechanisms. In all these conditions the performance of the neural controller in real robots is comparable to the one obtained in simulation.

Self-organized coordinated motion in groups of physically connected robots

Baldassarre G;Trianni V;Nolfi S
2007

Abstract

An important goal of collective robotics is the design of control systems that allow groups of robots to accomplish common tasks by coordinating without a centralized control. In this paper, we study how a group of physically assembled robots can display coherent behavior on the basis of a simple neural controller that has access only to local sensory information. This controller is synthesized through artificial evolution in a simulated environment in order to let the robots display coordinated-motion behaviors. The evolved controller proves to be robust enough to allow a smooth transfer from simulated to real robots. Additionally, it generalizes to new experimental conditions, such as different sizes/shapes of the group and/or different connection mechanisms. In all these conditions the performance of the neural controller in real robots is comparable to the one obtained in simulation.
2007
Istituto di Scienze e Tecnologie della Cognizione - ISTC
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/33190
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 91
  • ???jsp.display-item.citation.isi??? 76
social impact