In this paper we develop a model of the ground deformation behaviour occurred at Ischia Island (Southern Italy) in the 1992-2010 time period. The model is employed to investigate the forces and physical parameters of the crust controlling the subsidence of the Island. To this aim, we integrate and homogenize in a Finite Element (FE) environment a large amount of data derived from several and different observation techniques (i.e, geological, geophysical and remote sensing). In detail, the main steps of the multiphysics model are: (i) the generation of a 3D geological model of the crust beneath the Island by merging the available geological and geophysical information; (ii) the optimization of a 3D thermal model by exploiting the thermal measurements available in literature; (iii) the definition of the 3D Brittle/Ductile transition by using the temperature distribution of the crust and the physical information of the rocks; (iv) the optimization of the ground deformation velocity model (that takes into account the rheological stratification) by considering the spatial and temporal information detected via satellite multi-orbit C-Band SAR (Synthetic Aperture Radar) measurements acquired during the 1992-2010 time period. The achieved results allow investigating the physical process responsible for the observed ground deformation pattern. In particular, they reveal how the rheology modulates the spatial and temporal evolution of the long-term subsidence phenomenon, highlighting a coupling effect of the viscosities of the rocks and the gravitational loading of the volcano edifice. Moreover, the achieved results provide a very detailed and realistic velocity field image of the subsurface crust of the Ischia Island Volcano.
The role of thermo-rheological properties of the crust beneath Ischia island (Southern Italy) in the modulation of the ground deformation pattern
Castaldo R;Gola G;Santilano A;De Novellis V;Pepe S;Manzo M;Manzella A;Tizzani P
2017
Abstract
In this paper we develop a model of the ground deformation behaviour occurred at Ischia Island (Southern Italy) in the 1992-2010 time period. The model is employed to investigate the forces and physical parameters of the crust controlling the subsidence of the Island. To this aim, we integrate and homogenize in a Finite Element (FE) environment a large amount of data derived from several and different observation techniques (i.e, geological, geophysical and remote sensing). In detail, the main steps of the multiphysics model are: (i) the generation of a 3D geological model of the crust beneath the Island by merging the available geological and geophysical information; (ii) the optimization of a 3D thermal model by exploiting the thermal measurements available in literature; (iii) the definition of the 3D Brittle/Ductile transition by using the temperature distribution of the crust and the physical information of the rocks; (iv) the optimization of the ground deformation velocity model (that takes into account the rheological stratification) by considering the spatial and temporal information detected via satellite multi-orbit C-Band SAR (Synthetic Aperture Radar) measurements acquired during the 1992-2010 time period. The achieved results allow investigating the physical process responsible for the observed ground deformation pattern. In particular, they reveal how the rheology modulates the spatial and temporal evolution of the long-term subsidence phenomenon, highlighting a coupling effect of the viscosities of the rocks and the gravitational loading of the volcano edifice. Moreover, the achieved results provide a very detailed and realistic velocity field image of the subsurface crust of the Ischia Island Volcano.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.