Data-driven extraction of knowledge naturally takes advantage from the use of statistics, since statistical approaches enable to summarize information embedded in the dataset. On the other hand, fuzzy logic has gained increasing importance in data analytics, since it can enable to build a transparent and interpretable knowledge base. In this paper, a method named Likelihood-Fuzzy Analysis (LFA) for translating statistical information coming from labelled data into a fuzzy classification system is proposed. The characteristics of the method and of the resulting fuzzy classifiers are underlined. They range from the capacity of managing a dataset eventually comprising heterogeneous variables and missing data, to the high predictability, good confidence measure in terms of class probabilities, and interpretability of the fuzzy classification model, by means of semantically interpretable fuzzy partitions and if-then rules. The application of the method on a number of benchmark datasets is presented, showing high performances and semantic power, with respect to well-established methods, including fuzzy systems and non-fuzzy approaches.

Likelihood-Fuzzy Analysis: from Data, through Statistics, to Interpretable Fuzzy Classifiers

Marco Pota;Massimo Esposito;Giuseppe De Pietro
2018

Abstract

Data-driven extraction of knowledge naturally takes advantage from the use of statistics, since statistical approaches enable to summarize information embedded in the dataset. On the other hand, fuzzy logic has gained increasing importance in data analytics, since it can enable to build a transparent and interpretable knowledge base. In this paper, a method named Likelihood-Fuzzy Analysis (LFA) for translating statistical information coming from labelled data into a fuzzy classification system is proposed. The characteristics of the method and of the resulting fuzzy classifiers are underlined. They range from the capacity of managing a dataset eventually comprising heterogeneous variables and missing data, to the high predictability, good confidence measure in terms of class probabilities, and interpretability of the fuzzy classification model, by means of semantically interpretable fuzzy partitions and if-then rules. The application of the method on a number of benchmark datasets is presented, showing high performances and semantic power, with respect to well-established methods, including fuzzy systems and non-fuzzy approaches.
2018
Istituto di Calcolo e Reti ad Alte Prestazioni - ICAR
Data analysis; Knowledge engineering; Fuzzy logic; Statistical learning; Classification.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/332108
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact