We present spectroscopic measurements looking for the coherent coupling between molecular magnetic centers and microwave photons. The aim is to find the optimal conditions and the best molecular features to achieve the quantum strong coupling regime, for which coherent dynamics of hybrid photon-spin states take place. To this end, we used a high critical temperature YBCO superconducting planar resonator working at 7.7 GHz and at low temperatures to investigate three molecular mononuclear coordination compounds, namely (PPh4)2[Cu(mnt)2] (where mnt2- = maleonitriledithiolate), [ErPc2]-TBA+ (where pc2- is the phtalocyaninato and TBA+ is the tetra-n-butylammonium cation) and Dy(trensal) (where H3trensal = 2,2?,2??-tris(salicylideneimino)triethylamine). Although the strong coupling regime was not achieved in these preliminary experiments, the results provided several hints on how to design molecular magnetic centers to be integrated into hybrid quantum circuits.

Coupling molecular spin centers to microwave planar resonators: Towards integration of molecular qubits in quantum circuits

Bonizzoni C;Ghirri A;Affronte M
2016

Abstract

We present spectroscopic measurements looking for the coherent coupling between molecular magnetic centers and microwave photons. The aim is to find the optimal conditions and the best molecular features to achieve the quantum strong coupling regime, for which coherent dynamics of hybrid photon-spin states take place. To this end, we used a high critical temperature YBCO superconducting planar resonator working at 7.7 GHz and at low temperatures to investigate three molecular mononuclear coordination compounds, namely (PPh4)2[Cu(mnt)2] (where mnt2- = maleonitriledithiolate), [ErPc2]-TBA+ (where pc2- is the phtalocyaninato and TBA+ is the tetra-n-butylammonium cation) and Dy(trensal) (where H3trensal = 2,2?,2??-tris(salicylideneimino)triethylamine). Although the strong coupling regime was not achieved in these preliminary experiments, the results provided several hints on how to design molecular magnetic centers to be integrated into hybrid quantum circuits.
2016
Istituto Nanoscienze - NANO
---
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/332397
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 29
  • ???jsp.display-item.citation.isi??? ND
social impact