The correct description of the ground state electronic and geometrical properties of multi-centre transition metal complexes necessitates of a high-level description of both dynamical and static correlation effects. In di-metallic complexes, the ground state low spin properties can be computed starting from single-determinants High-Spin (HS) and Broken Symmetry (BS) states by reconstructing an approximated low spin potential energy surface through the extended broken symmetry approach, based on the Heisenberg Hamiltonian. In the present work, we first apply this approach within the variational Monte Carlo method to tackle the geometry optimization of a Fe2S2(SH)42- model complex. To describe the HS and BS wavefunctions, we use a fully optimized unrestricted single determinant with a correlated Jastrow factor able to recover a large amount of dynamical correlation. We compared our results with those obtained by density functional theory and other multiconfigurational appro

Geometries of low spin states of multi-centre transition metal complexes through extended broken symmetry variational Monte Carlo

Barborini M;
2016

Abstract

The correct description of the ground state electronic and geometrical properties of multi-centre transition metal complexes necessitates of a high-level description of both dynamical and static correlation effects. In di-metallic complexes, the ground state low spin properties can be computed starting from single-determinants High-Spin (HS) and Broken Symmetry (BS) states by reconstructing an approximated low spin potential energy surface through the extended broken symmetry approach, based on the Heisenberg Hamiltonian. In the present work, we first apply this approach within the variational Monte Carlo method to tackle the geometry optimization of a Fe2S2(SH)42- model complex. To describe the HS and BS wavefunctions, we use a fully optimized unrestricted single determinant with a correlated Jastrow factor able to recover a large amount of dynamical correlation. We compared our results with those obtained by density functional theory and other multiconfigurational appro
2016
Istituto Nanoscienze - NANO
---
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/332411
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? ND
social impact