The indirect effect of oxygen background gas on the La/Al ratio during the growth of LaAlO3 (LAO) films by pulsed laser deposition (PLD) is analyzed, in a pressure range between 10-3 and 10-1 mbar. We resort to two complementary investigation methods: Rutherford backscattering spectroscopy and spectrally resolved, time-gated imaging of the laser plume. The first technique allows us to analyze the stoichiometry of the deposited films, and the latter allows us to analyze the plume expansion phase of the PLD process by collecting chemically resolved two-dimensional images of the relevant atomic/molecular species. The comparison between the results obtained by the two techniques allows us to highlight the role of the plume-gas interaction in affecting cations stoichiometry. Our results indicate that, in the considered pressure range, the background oxygen pressure affects the cations stoichiometry of the LAO films, besides determining their oxygen content

Plasma dynamics and cations off-stoichiometry in LaAlO3 films grown in high pressures regimes

Sambri A;Di Gennaro E;Scotti Di Uccio U;Amoruso S;Miletto Granozio F
2016

Abstract

The indirect effect of oxygen background gas on the La/Al ratio during the growth of LaAlO3 (LAO) films by pulsed laser deposition (PLD) is analyzed, in a pressure range between 10-3 and 10-1 mbar. We resort to two complementary investigation methods: Rutherford backscattering spectroscopy and spectrally resolved, time-gated imaging of the laser plume. The first technique allows us to analyze the stoichiometry of the deposited films, and the latter allows us to analyze the plume expansion phase of the PLD process by collecting chemically resolved two-dimensional images of the relevant atomic/molecular species. The comparison between the results obtained by the two techniques allows us to highlight the role of the plume-gas interaction in affecting cations stoichiometry. Our results indicate that, in the considered pressure range, the background oxygen pressure affects the cations stoichiometry of the LAO films, besides determining their oxygen content
2016
Istituto Superconduttori, materiali innovativi e dispositivi - SPIN
Istituto Nanoscienze - NANO
---
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/332416
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? ND
social impact