We carry out a comprehensive computational study on the stability of the Dirac cone in artificial graphene realized in nanopatterned quantum wells. Our real-space approach allows us to vary the size, shape, and positioning of the quantum dots in the hexagonal lattice. We compare the (noninteracting) single-particle calculations to density-functional studies within both local-density approximation and meta-generalized-gradient approximation. Furthermore, the density-functional results are compared against numerically precise path-integral quantum Monte Carlo calculations. As a whole, our results indicate high stability of the Dirac bands against external parameters, which is reassuring for further experimental investigations.

Stability of the Dirac cone in artificial graphene formed in quantum wells: A computational many-electron study

Rozzi CA;
2016

Abstract

We carry out a comprehensive computational study on the stability of the Dirac cone in artificial graphene realized in nanopatterned quantum wells. Our real-space approach allows us to vary the size, shape, and positioning of the quantum dots in the hexagonal lattice. We compare the (noninteracting) single-particle calculations to density-functional studies within both local-density approximation and meta-generalized-gradient approximation. Furthermore, the density-functional results are compared against numerically precise path-integral quantum Monte Carlo calculations. As a whole, our results indicate high stability of the Dirac bands against external parameters, which is reassuring for further experimental investigations.
2016
Istituto Nanoscienze - NANO
Artificial grapheme
Dirac materials
Stability properties
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/332429
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? ND
social impact