We consider a coupled-cavity array, where each cavity interacts with an atom under the rotating-wave approximation. For a staggered pattern of intercavity couplings, a pair of field normal modes, each bilocalized at the two array ends, arises. A rich structure of dynamical regimes can hence be addressed, depending on which resonance condition is set between the atom and the field modes. We show that this can be harnessed to carry out high-fidelity quantum-state transfer (QST) of photonic, atomic, or polaritonic states. Moreover, by partitioning the array into coupled modules of shorter length, the QST time can be substantially shortened without significantly affecting the fidelity.
Quantum-state transfer in staggered coupled-cavity arrays
Ciccarello F;
2016
Abstract
We consider a coupled-cavity array, where each cavity interacts with an atom under the rotating-wave approximation. For a staggered pattern of intercavity couplings, a pair of field normal modes, each bilocalized at the two array ends, arises. A rich structure of dynamical regimes can hence be addressed, depending on which resonance condition is set between the atom and the field modes. We show that this can be harnessed to carry out high-fidelity quantum-state transfer (QST) of photonic, atomic, or polaritonic states. Moreover, by partitioning the array into coupled modules of shorter length, the QST time can be substantially shortened without significantly affecting the fidelity.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.