We consider a coupled-cavity array, where each cavity interacts with an atom under the rotating-wave approximation. For a staggered pattern of intercavity couplings, a pair of field normal modes, each bilocalized at the two array ends, arises. A rich structure of dynamical regimes can hence be addressed, depending on which resonance condition is set between the atom and the field modes. We show that this can be harnessed to carry out high-fidelity quantum-state transfer (QST) of photonic, atomic, or polaritonic states. Moreover, by partitioning the array into coupled modules of shorter length, the QST time can be substantially shortened without significantly affecting the fidelity.

Quantum-state transfer in staggered coupled-cavity arrays

Ciccarello F;
2016

Abstract

We consider a coupled-cavity array, where each cavity interacts with an atom under the rotating-wave approximation. For a staggered pattern of intercavity couplings, a pair of field normal modes, each bilocalized at the two array ends, arises. A rich structure of dynamical regimes can hence be addressed, depending on which resonance condition is set between the atom and the field modes. We show that this can be harnessed to carry out high-fidelity quantum-state transfer (QST) of photonic, atomic, or polaritonic states. Moreover, by partitioning the array into coupled modules of shorter length, the QST time can be substantially shortened without significantly affecting the fidelity.
2016
Istituto Nanoscienze - NANO
---
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/332436
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 59
  • ???jsp.display-item.citation.isi??? ND
social impact