Methods: In vitro, CD3(+)-cells, isolated from buffy coats, were stimulated with anti-CD3/CD28 beads, IL-6, TNF-alpha, IL-17, INF-gamma or PMA/ionomycin. Following stimulation, TF expression on cell-surface, at gene and protein levels, as well as its procoagulant activity in whole cells and microparticles was measured. In vivo, TF expression was evaluated in CD3(+)-cells isolated from the aorta and the coronary sinus of ACS-NSTEMI and stable coronary artery disease (SCAD) patients. The presence of CD3(+)-TF+ cells was also evaluated by immunohistochemistry in thrombi aspirated from ACS-STEMI patients.
Objective: T-lymphocyte activation plays an important role in the pathophysiology of acute coronary syndromes (ACS). Plaques from ACS patients show a selective oligoclonal expansion of T-cells, indicating a specific, antigen-driven recruitment of T-lymphocytes within the unstable lesions. At present, however, it is not known whether T-cells may contribute directly to thrombosis by expressing functional tissue factor (TF). Accordingly, the aim of the present study was to investigate whether T-cells are able to express functional TF in their activated status.
Expression of functional tissue factor in activated T-lymphocytes in vitro and in vivo: A possible contribution of immunity to thrombosis?
2016
Abstract
Objective: T-lymphocyte activation plays an important role in the pathophysiology of acute coronary syndromes (ACS). Plaques from ACS patients show a selective oligoclonal expansion of T-cells, indicating a specific, antigen-driven recruitment of T-lymphocytes within the unstable lesions. At present, however, it is not known whether T-cells may contribute directly to thrombosis by expressing functional tissue factor (TF). Accordingly, the aim of the present study was to investigate whether T-cells are able to express functional TF in their activated status.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.