In future communication satellite systems the adoption of higher frequencies as Q/V-band (around 40 GHz for downlink and 50 GHz for uplink) is seen as the promising step forward to achieve higher performance in terms of total system throughput. The envisaged usage of these frequency bands, bringing an additional 5 GHz bandwidth in each polarization (10 GHz in total), is dual: as feeder link for Fixed Satellite Service (FSS) systems and as user link for Mobile Satellite Service (MSS) for aeronautical terminals. The QV-LIFT project is paving the road for the future deployment of such Q/V-band SatCom systems, providing core technologies for both ground and user segments. The subsystems developed in the course of the project will be tested in a real environment using the Q/V-band Aldo Paraboni payload on Alphasat and its associated ground segment, made available by the Italian Space Agency (ASI). This project has been granted by the European Commission and involves a consortium of companies and universities coordinated by the Italian Space Agency (Agenzia Spaziale Italiana, ASI). The consortium consists of: Consorzio Nazionale Interuniversitario per le Telecomunicazioni (CNIT), Martel GmbH (Martel), Erzia Technologies SL (Erzia), Eutelsat S.A. (Eutelsat), M.B.I. SRL (MBI), Heriot-Watt University (HWU), SkyTech Italia SRL (SkyTech), OMMIC SAS (OMMIC). This paper presents part of the project activities, such as the description of one possible future Very High Throughput Satellite (VHTS) scenarios for Q/V-band systems. Furthermore, the technologies currently under development and the system test architecture which will be used to validate the developed technology and functionalities are presented.
QV-LIFT project: using the Q/V band Aldo Paraboni demonstration payload for validating future satellite systems
Riva C;Nebuloni R;
2017
Abstract
In future communication satellite systems the adoption of higher frequencies as Q/V-band (around 40 GHz for downlink and 50 GHz for uplink) is seen as the promising step forward to achieve higher performance in terms of total system throughput. The envisaged usage of these frequency bands, bringing an additional 5 GHz bandwidth in each polarization (10 GHz in total), is dual: as feeder link for Fixed Satellite Service (FSS) systems and as user link for Mobile Satellite Service (MSS) for aeronautical terminals. The QV-LIFT project is paving the road for the future deployment of such Q/V-band SatCom systems, providing core technologies for both ground and user segments. The subsystems developed in the course of the project will be tested in a real environment using the Q/V-band Aldo Paraboni payload on Alphasat and its associated ground segment, made available by the Italian Space Agency (ASI). This project has been granted by the European Commission and involves a consortium of companies and universities coordinated by the Italian Space Agency (Agenzia Spaziale Italiana, ASI). The consortium consists of: Consorzio Nazionale Interuniversitario per le Telecomunicazioni (CNIT), Martel GmbH (Martel), Erzia Technologies SL (Erzia), Eutelsat S.A. (Eutelsat), M.B.I. SRL (MBI), Heriot-Watt University (HWU), SkyTech Italia SRL (SkyTech), OMMIC SAS (OMMIC). This paper presents part of the project activities, such as the description of one possible future Very High Throughput Satellite (VHTS) scenarios for Q/V-band systems. Furthermore, the technologies currently under development and the system test architecture which will be used to validate the developed technology and functionalities are presented.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.