The development of advanced polymer nanocomposites requires a strong filler-polymer interfacial interaction and an optimal filler nanodispersion. The incorporation of the clays into a polymer matrix frequently does not improve the composite mechanical properties, owing to both poor dispersion and macroscopic particle dimensions. In this work, pristine and organically-modified sepiolites (Sep) were structurally modified by an acid treatment, which provides nano-sized sepiolite (NS-Sep) fibers with reduced particle size and increased silanol groups on the surface layer. NS-Sep fibers were used to prepare styrene-butadiene rubber nanocomposites with enhanced mechanical properties. Dynamic-mechanical analysis of clay polymer nanocomposites demonstrated that the NS-Sep fibers provided an excellent balance between reinforcing and hysteretic behavior, compared to the large-sized pristine Sep and isotropic silica. This was related to the enhanced interfacial chemical interaction between NS-Sep and rubber, as well as to the size and self-assembly of anisotropic nanofibers to form filler network structures, as supported by transmission electron microscopy analysis. The preparation of nanocomposites, based on Sep nanofibers obtained by a simple and versatile acid treatment, can thus be considered an alternative approach for the designing of advanced clay polymer nanocomposites.
Size-controlled self-assembly of anisotropic sepiolite fibers in rubber nanocomposites
Conzatti L;Stagnaro P;
2018
Abstract
The development of advanced polymer nanocomposites requires a strong filler-polymer interfacial interaction and an optimal filler nanodispersion. The incorporation of the clays into a polymer matrix frequently does not improve the composite mechanical properties, owing to both poor dispersion and macroscopic particle dimensions. In this work, pristine and organically-modified sepiolites (Sep) were structurally modified by an acid treatment, which provides nano-sized sepiolite (NS-Sep) fibers with reduced particle size and increased silanol groups on the surface layer. NS-Sep fibers were used to prepare styrene-butadiene rubber nanocomposites with enhanced mechanical properties. Dynamic-mechanical analysis of clay polymer nanocomposites demonstrated that the NS-Sep fibers provided an excellent balance between reinforcing and hysteretic behavior, compared to the large-sized pristine Sep and isotropic silica. This was related to the enhanced interfacial chemical interaction between NS-Sep and rubber, as well as to the size and self-assembly of anisotropic nanofibers to form filler network structures, as supported by transmission electron microscopy analysis. The preparation of nanocomposites, based on Sep nanofibers obtained by a simple and versatile acid treatment, can thus be considered an alternative approach for the designing of advanced clay polymer nanocomposites.| File | Dimensione | Formato | |
|---|---|---|---|
|
prod_380892-doc_129169.pdf
solo utenti autorizzati
Descrizione: Size-controlled self-assembly of anisotropic sepiolite fibers in rubber nanocomposites
Tipologia:
Versione Editoriale (PDF)
Dimensione
9.77 MB
Formato
Adobe PDF
|
9.77 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
|
prod_380892-doc_185318.pdf
accesso aperto
Descrizione: Size-controlled self-assembly of anisotropic sepiolite fibers in rubber nanocomposites
Tipologia:
Versione Editoriale (PDF)
Dimensione
1.36 MB
Formato
Adobe PDF
|
1.36 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


