Capacitance-voltage spectroscopy has proved to be a very powerful experimental technique towards the investigation of carrier-carrier interactions both qualitatively and quantitatively in complex coupled nanostructures. Here, we exploit this method to observe indirect exciton complexes in a quantum dot molecule and to quantify the electron-hole interactions between two dots in a quantum dot molecule, formed by vertical stacking of self-assembled quantum dot layers. While frequency-dependent measurements distinguish between the s- and p-charging behavior, under perpendicular magnetic fields, reordering of the quantized states charging sequence is observed along with the formation of a Landau fan in the wetting layer that is used to reconstruct the Fermi energy level.
Probing indirect exciton complexes in a quantum dot molecule via capacitance-voltage spectroscopy
Pal S;
2016
Abstract
Capacitance-voltage spectroscopy has proved to be a very powerful experimental technique towards the investigation of carrier-carrier interactions both qualitatively and quantitatively in complex coupled nanostructures. Here, we exploit this method to observe indirect exciton complexes in a quantum dot molecule and to quantify the electron-hole interactions between two dots in a quantum dot molecule, formed by vertical stacking of self-assembled quantum dot layers. While frequency-dependent measurements distinguish between the s- and p-charging behavior, under perpendicular magnetic fields, reordering of the quantized states charging sequence is observed along with the formation of a Landau fan in the wetting layer that is used to reconstruct the Fermi energy level.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.