We investigate the nonlinear transmission of a ~280-layer turbostratic graphene sheet for near-infrared amplifier laser pulses (775 nm, Ti:sapphire laser) with a duration of 150-fs and 20-fs. Saturable absorption is observed in both cases, however it is not very strong, amounting to ~13% transmittance change for the 20-fs (150-fs) pulses at a peak intensity of 30 GW/cm2 (4 GW/cm2). The dependence on incident peak intensity is reproduced well using a theoretical model for the time-dependent saturable absorption, where the excited carriers vacate the photo-excited energy range within 3-5 fs, which we attribute to energy redistribution due to carrier-carrier scattering. This is also supported by spectrally resolved measurements for the 20-fs pulses, which show a marked dependence of the degree of saturation on the photon energy. A key result is that the shorter pulses do not yield a lower saturation fluence, due to the combined effects of the broader excitation bandwidth, and the rapid and broad energy redistribution. We also predict the potential performance of multilayer graphene samples for removing pedestal and pre-pulse structure from ultrafast high-energy pulses.

Saturable absorption of femtosecond optical pulses in multilayer turbostratic graphene

Bianco F;Tredicucci A;
2016

Abstract

We investigate the nonlinear transmission of a ~280-layer turbostratic graphene sheet for near-infrared amplifier laser pulses (775 nm, Ti:sapphire laser) with a duration of 150-fs and 20-fs. Saturable absorption is observed in both cases, however it is not very strong, amounting to ~13% transmittance change for the 20-fs (150-fs) pulses at a peak intensity of 30 GW/cm2 (4 GW/cm2). The dependence on incident peak intensity is reproduced well using a theoretical model for the time-dependent saturable absorption, where the excited carriers vacate the photo-excited energy range within 3-5 fs, which we attribute to energy redistribution due to carrier-carrier scattering. This is also supported by spectrally resolved measurements for the 20-fs pulses, which show a marked dependence of the degree of saturation on the photon energy. A key result is that the shorter pulses do not yield a lower saturation fluence, due to the combined effects of the broader excitation bandwidth, and the rapid and broad energy redistribution. We also predict the potential performance of multilayer graphene samples for removing pedestal and pre-pulse structure from ultrafast high-energy pulses.
2016
Istituto Nanoscienze - NANO
Nanomaterials
Nonlinear optics
Materials
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/332904
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? ND
social impact