The thermodynamic properties of water are essential for determining the corresponding properties of every biosystem it interacts with. Indeed, the comprehension of hydration mechanisms is fundamental for the understanding and the control of paper degradation pathways induced by natural or artificial aging. In fact, the interactions between water and cellulose at the accessible sites within the fibres' complex structure are responsible for the rupture of hydrogen bonds and the consequent swelling of the cellulose fibres and consumption of the amorphous regions. In this paper we study the hydration process of cellulose in naturally and artificially aged paper samples by measuring the proton spin-lattice (T1) and spin-spin (T2) relaxation times of the macroscopic magnetization through nuclear magnetic resonance (NMR) experiments. The observed behaviour of T1 and T2 is quite complex and strictly dependent on the water content of paper samples. This has been interpreted as due to the occurrence of different mechanisms regulating the water-cellulose interaction within the fibres. Furthermore, we have measured T1 as a function of the artificial aging time comparing the results with those measured on three paper samples dated back to the 15th century. We found that the evolution of T1 in model papers artificially aged is correlated with that of ancient paper, providing therefore a way for estimating the degradation of cellulosic materials in terms of an equivalent time of artificial aging. These results provide fundamental information for industrial applications and for the preservation and restoration of cultural heritage materials based on cellulose such as ancient paper or textiles. © the Owner Societies 2016.

The role of water in the degradation process of paper using 1H HR-MAS NMR spectroscopy

Corsaro C;Mallamace F;Missori M
2016

Abstract

The thermodynamic properties of water are essential for determining the corresponding properties of every biosystem it interacts with. Indeed, the comprehension of hydration mechanisms is fundamental for the understanding and the control of paper degradation pathways induced by natural or artificial aging. In fact, the interactions between water and cellulose at the accessible sites within the fibres' complex structure are responsible for the rupture of hydrogen bonds and the consequent swelling of the cellulose fibres and consumption of the amorphous regions. In this paper we study the hydration process of cellulose in naturally and artificially aged paper samples by measuring the proton spin-lattice (T1) and spin-spin (T2) relaxation times of the macroscopic magnetization through nuclear magnetic resonance (NMR) experiments. The observed behaviour of T1 and T2 is quite complex and strictly dependent on the water content of paper samples. This has been interpreted as due to the occurrence of different mechanisms regulating the water-cellulose interaction within the fibres. Furthermore, we have measured T1 as a function of the artificial aging time comparing the results with those measured on three paper samples dated back to the 15th century. We found that the evolution of T1 in model papers artificially aged is correlated with that of ancient paper, providing therefore a way for estimating the degradation of cellulosic materials in terms of an equivalent time of artificial aging. These results provide fundamental information for industrial applications and for the preservation and restoration of cultural heritage materials based on cellulose such as ancient paper or textiles. © the Owner Societies 2016.
2016
Istituto per i Processi Chimico-Fisici - IPCF
Istituto dei Sistemi Complessi - ISC
H HR-MAS NMR spectroscopy
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/333184
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? ND
social impact