Chemical vapor deposition has proved to be successful in producing graphene samples on silicon carbide (SiC) homogeneous at the centimeter scale in terms of Hall conductance quantization. Here, we report on the realization of co-planar diffusive Al/ monolayer graphene/ Al junctions on the same graphene sheet, with separations between the electrodes down to 200 nm. Robust Josephson coupling has been measured for separations not larger than 300 nm. Transport properties are reproducible on different junctions and indicate that graphene on SiC substrates is a concrete candidate to provide scalability of hybrid Josephson graphene/superconductor devices.

Josephson Coupling in Junctions Made of Monolayer Graphene Grown on SiC

Massarotti D;Lucignano P;Tagliacozzo A;Tafuri F
2016

Abstract

Chemical vapor deposition has proved to be successful in producing graphene samples on silicon carbide (SiC) homogeneous at the centimeter scale in terms of Hall conductance quantization. Here, we report on the realization of co-planar diffusive Al/ monolayer graphene/ Al junctions on the same graphene sheet, with separations between the electrodes down to 200 nm. Robust Josephson coupling has been measured for separations not larger than 300 nm. Transport properties are reproducible on different junctions and indicate that graphene on SiC substrates is a concrete candidate to provide scalability of hybrid Josephson graphene/superconductor devices.
2016
Istituto Superconduttori, materiali innovativi e dispositivi - SPIN
Graphene
Josephson effect
Silicon carbide
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/333245
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? ND
social impact