Simulations of propagation of light beams in specially designed multilayer semiconductor structures (one-dimensional photonic crystals) with embedded quantum wells reveal characteristic optical properties of resonant hyperbolic metamaterials. A strong dependence of the refraction angle and the optical beam spread on the exciton radiative lifetime is revealed. We demonstrate the strong negative refraction of light and the control of the group velocity of light by an external bias through its effect upon the exciton radiative properties.
Light propagation in tunable exciton-polariton one-dimensional photonic crystals
2016
Abstract
Simulations of propagation of light beams in specially designed multilayer semiconductor structures (one-dimensional photonic crystals) with embedded quantum wells reveal characteristic optical properties of resonant hyperbolic metamaterials. A strong dependence of the refraction angle and the optical beam spread on the exciton radiative lifetime is revealed. We demonstrate the strong negative refraction of light and the control of the group velocity of light by an external bias through its effect upon the exciton radiative properties.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


