Ranking query results effectively by considering user past behaviour and preferences is a primary concern for IR researchers both in academia and industry. In this context, LtR is widely believed to be the most effective solution to design ranking models that account for user-interaction features that have proved to remarkably impact on IR effectiveness. In this paper, we explore the possibility of integrating the user dynamic directly into the LtR algorithms. Specifically, we model with Markov chains the behaviour of users in scanning a ranked result list and we modify Lambdamart, a state-of-the-art LtR algorithm, to exploit a new discount loss function calibrated on the proposed Markovian model of user dynamic. We evaluate the performance of the proposed approach on publicly available LtR datasets, finding that the improvements measured over the standard algorithm are statistically significant.

On including the user dynamic in learning to rank

Lucchese C;Perego R
2017

Abstract

Ranking query results effectively by considering user past behaviour and preferences is a primary concern for IR researchers both in academia and industry. In this context, LtR is widely believed to be the most effective solution to design ranking models that account for user-interaction features that have proved to remarkably impact on IR effectiveness. In this paper, we explore the possibility of integrating the user dynamic directly into the LtR algorithms. Specifically, we model with Markov chains the behaviour of users in scanning a ranked result list and we modify Lambdamart, a state-of-the-art LtR algorithm, to exploit a new discount loss function calibrated on the proposed Markovian model of user dynamic. We evaluate the performance of the proposed approach on publicly available LtR datasets, finding that the improvements measured over the standard algorithm are statistically significant.
2017
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
978-1-4503-5022-8
Learning to rank
User dynamics
Effectiveness
Ranking
File in questo prodotto:
File Dimensione Formato  
prod_381005-doc_132916.pdf

solo utenti autorizzati

Descrizione: On including the user dynamic in learning to rank
Tipologia: Versione Editoriale (PDF)
Dimensione 1.02 MB
Formato Adobe PDF
1.02 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/333411
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 5
social impact