We report the relationship between epitaxial strain and the crystallographic orientation of the in-phase rotation axis and A-site displacements in Pbnm-type perovskite films. Synchrotron diffraction measurements of EuFeO3 films under strain states ranging from 2% compressive to 0.9% tensile on cubic or rhombohedral substrates exhibit a combination of a-a+c- and a+a-c- rotational patterns. We compare the EuFeO3 behavior with previously reported experimental and theoretical work on strained Pbnm-type films on nonorthorhombic substrates, as well as additional measurements from LaGaO3,LaFeO3, and Eu0.7Sr0.3MnO3 films on SrTiO3. Compiling the results from various material systems reveals a general strain dependence in which compressive strain strongly favors a-a+c- and a+a-c- rotation patterns and tensile strain weakly favors a-a-c+ structures. In contrast, EuFeO3 films grown on Pbnm-type GdScO3 under 2.3% tensile strain take on a uniform a-a+c- rotation pattern imprinted from the substrate, despite strain considerations that favor the a-a-c+ pattern. These results point to the use of substrate imprinting as a more robust route than strain for tuning the crystallographic orientations of the octahedral rotations and A-site displacements needed to realize rotation-induced hybrid improper ferroelectricity in oxide heterostructures.

Octahedral rotation patterns in strained EuFeO3 and other Pbnm perovskite films: Implications for hybrid improper ferroelectricity

Miletto Granozio F;
2016

Abstract

We report the relationship between epitaxial strain and the crystallographic orientation of the in-phase rotation axis and A-site displacements in Pbnm-type perovskite films. Synchrotron diffraction measurements of EuFeO3 films under strain states ranging from 2% compressive to 0.9% tensile on cubic or rhombohedral substrates exhibit a combination of a-a+c- and a+a-c- rotational patterns. We compare the EuFeO3 behavior with previously reported experimental and theoretical work on strained Pbnm-type films on nonorthorhombic substrates, as well as additional measurements from LaGaO3,LaFeO3, and Eu0.7Sr0.3MnO3 films on SrTiO3. Compiling the results from various material systems reveals a general strain dependence in which compressive strain strongly favors a-a+c- and a+a-c- rotation patterns and tensile strain weakly favors a-a-c+ structures. In contrast, EuFeO3 films grown on Pbnm-type GdScO3 under 2.3% tensile strain take on a uniform a-a+c- rotation pattern imprinted from the substrate, despite strain considerations that favor the a-a-c+ pattern. These results point to the use of substrate imprinting as a more robust route than strain for tuning the crystallographic orientations of the octahedral rotations and A-site displacements needed to realize rotation-induced hybrid improper ferroelectricity in oxide heterostructures.
2016
Istituto Superconduttori, materiali innovativi e dispositivi - SPIN
Octahedral rotation patterns in strained EuFeO3 and other Pbnm perovskite films: Implications for hybrid improper ferroelectricity
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/333526
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? ND
social impact