Background: Many tumor-related factors have shown the ability to affect metabolic pathways by paving the way for cancer-specific metabolic features. Here, we investigate the regulation of mTORC1 by MDM4, a p53-inhibitor with oncogenic or anti-survival activities depending on cell growth conditions. Method: MDM4-mTOR relationship was analysed through experiments of overexpression or silencing of endogenous proteins in cell culture and using purified proteins in vitro. Data were further confirmed in vivo using a transgenic mouse model overexpressing MDM4. Additionally, the Cancer Genome Atlas (TCGA) database (N = 356) was adopted to analyze the correlation between MDM4 and mTOR levels and 3D cultures were used to analyse the p53-independent activity of MDM4. Results: Following nutrient deprivation, MDM4 impairs mTORC1 activity by binding and inhibiting the kinase mTOR, and contributing to maintain the cytosolic inactive pool of mTORC1. This function is independent of p53. Inhibition of mTORC1 by MDM4 results in reduced phosphorylation of the mTOR downstream target p70S6K1 both in vitro and in vivo in a MDM4-transgenic mouse. Consistently, MDM4 reduces cell size and proliferation, two features controlled by p70S6K1, and, importantly, inhibits mTORC1-mediated mammosphere formation. Noteworthy, MDM4 transcript levels are significantly reduced in breast tumors characterized by high mTOR levels. Conclusion: Overall, these data identify MDM4 as a nutrient-sensor able to inhibit mTORC1 and highlight its metabolism-related tumor-suppressing function.

MDM4 actively restrains cytoplasmic mTORC1 by sensing nutrient availability.

Teveroni Emanuela;Pellegrino Marsha;Moretti Fabiola
2017-01-01

Abstract

Background: Many tumor-related factors have shown the ability to affect metabolic pathways by paving the way for cancer-specific metabolic features. Here, we investigate the regulation of mTORC1 by MDM4, a p53-inhibitor with oncogenic or anti-survival activities depending on cell growth conditions. Method: MDM4-mTOR relationship was analysed through experiments of overexpression or silencing of endogenous proteins in cell culture and using purified proteins in vitro. Data were further confirmed in vivo using a transgenic mouse model overexpressing MDM4. Additionally, the Cancer Genome Atlas (TCGA) database (N = 356) was adopted to analyze the correlation between MDM4 and mTOR levels and 3D cultures were used to analyse the p53-independent activity of MDM4. Results: Following nutrient deprivation, MDM4 impairs mTORC1 activity by binding and inhibiting the kinase mTOR, and contributing to maintain the cytosolic inactive pool of mTORC1. This function is independent of p53. Inhibition of mTORC1 by MDM4 results in reduced phosphorylation of the mTOR downstream target p70S6K1 both in vitro and in vivo in a MDM4-transgenic mouse. Consistently, MDM4 reduces cell size and proliferation, two features controlled by p70S6K1, and, importantly, inhibits mTORC1-mediated mammosphere formation. Noteworthy, MDM4 transcript levels are significantly reduced in breast tumors characterized by high mTOR levels. Conclusion: Overall, these data identify MDM4 as a nutrient-sensor able to inhibit mTORC1 and highlight its metabolism-related tumor-suppressing function.
2017
Istituto di Biologia Cellulare e Neurobiologia - IBCN - Sede Monterotondo Scalo
mdm4
mTOR
metabolism
cancer
breast cancer
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/333616
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? ND
social impact