The magnetocaloric effect (MCE) is an intrinsic property of magnetic materials that enable magnetic refrigeration devices without using the traditional vapour-compression. Temperature sensitive and anisotropic magnetic solids might give rise to a large rotating MCE for building compact and efficient magnetic cooling systems by simply rotating the sample. Here, we report an unprecedented maximal refrigeration capacity of 497.36 J/kg (at 70 kOe) in perovskite TbFeO3 single crystal, resulting from its giant anisotropic magnetic entropy change along a axis. Our paper reveals that interaction between Fe-3d and Tb-4f electrons drives extremely interesting spin reorientation transition, which is highly sensitive to magnetic field and temperature. These findings highlight potential applications of an emerging material for high efficient low temperature magnetic refrigeration, which is compact and quiet, and does not use ozone-depleting coolant gases. VC 2016 AIP Publishing LLC

Magnetic phase transition and giant anisotropic magnetic entropy change in TbFeO3 single crystal

Stroppa A;
2016

Abstract

The magnetocaloric effect (MCE) is an intrinsic property of magnetic materials that enable magnetic refrigeration devices without using the traditional vapour-compression. Temperature sensitive and anisotropic magnetic solids might give rise to a large rotating MCE for building compact and efficient magnetic cooling systems by simply rotating the sample. Here, we report an unprecedented maximal refrigeration capacity of 497.36 J/kg (at 70 kOe) in perovskite TbFeO3 single crystal, resulting from its giant anisotropic magnetic entropy change along a axis. Our paper reveals that interaction between Fe-3d and Tb-4f electrons drives extremely interesting spin reorientation transition, which is highly sensitive to magnetic field and temperature. These findings highlight potential applications of an emerging material for high efficient low temperature magnetic refrigeration, which is compact and quiet, and does not use ozone-depleting coolant gases. VC 2016 AIP Publishing LLC
2016
Istituto Superconduttori, materiali innovativi e dispositivi - SPIN
Magnetic phase transition and giant anisotropic magnetic entropy change in TbFeO3 single crystal
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/333693
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 69
  • ???jsp.display-item.citation.isi??? ND
social impact