Paola Ridge, along the NW Calabrian margin (southern Tyrrhenian Sea), is one of the few reported deep sea sites of precipitation of authigenic carbonates in the Tyrrhenian Sea. Here, the changing composition of the seeping fluids and the dynamic nature of the seepage induced the precipitation of pyrite, siderite and other carbonate phases. The occurrence of this array of authigenic precipitates is thought to be related to fluctuation of the sulfate-methane transition zone (SMTZ). Concretions of authigenic minerals formed in the near sub-bottom sediments of the Paola Ridge were investigated for their geochemical and isotopic composition. These concretions were collected in an area characterized by the presence of two alleged mud volcanoes and three mud diapirs. The mud diapirs are dotted by pockmarks and dissected by normal faults, and are known for having been a site of fluid seepage for at least the past 40 kyrs. Present-day venting activity occurs alongside the two alleged mud volcanoes and is dominated by CO2-rich discharging fluids. This discover led us to question the hypothesis of the mud volcanoes and investigate the origin of the fluids in each different domed structure of the study area. In this study, we used stable isotopes (carbon and oxygen) of carbonates coupled with rare earth element (REE) composition of different carbonate and non-carbonate phases for tracing fluid composition and early diagenesis of authigenic precipitates. The analyses on authigenic precipitates were coupled with chemical investigation of venting gas and sea-water. Authigenic calcite/aragonite concretions, from surficial sediments on diapiric structures, have depleted 13C isotopic composition and slightly positive delta18O values. By contrast, siderite concretions, generally found within the first 6 m of sediments on the alleged mud volcanoes, yielded positive delta13C and delta18O values. The siderite REE pattern shows consistent LREE (light REE) fractionation, MREE (medium REE) enrichment and positive Gd and La anomalies. As shown by the REE distribution, the 13C-depleted composition and their association with chemosymbiotic fauna, calcite/aragonite precipitated at time of moderate to high methane flux close to the seafloor, under the influence of bottom seawater. Authigenic siderite, on the other hand, formed in the subseafloor, during periods of lower gas discharges under prolonged anoxic conditions within sediments in equilibrium with 13C-rich dissolved inorganic carbon (DIC) and 18O-rich water, likely related to methanogenesis and intermittent venting of deep-sourced CO2.

Authigenic minerals from the Paola Ridge (southern Tyrrhenian Sea): Evidences of episodic methane seepage

Franchi F;Rovere M;Gamberi F;Tassi F
2017

Abstract

Paola Ridge, along the NW Calabrian margin (southern Tyrrhenian Sea), is one of the few reported deep sea sites of precipitation of authigenic carbonates in the Tyrrhenian Sea. Here, the changing composition of the seeping fluids and the dynamic nature of the seepage induced the precipitation of pyrite, siderite and other carbonate phases. The occurrence of this array of authigenic precipitates is thought to be related to fluctuation of the sulfate-methane transition zone (SMTZ). Concretions of authigenic minerals formed in the near sub-bottom sediments of the Paola Ridge were investigated for their geochemical and isotopic composition. These concretions were collected in an area characterized by the presence of two alleged mud volcanoes and three mud diapirs. The mud diapirs are dotted by pockmarks and dissected by normal faults, and are known for having been a site of fluid seepage for at least the past 40 kyrs. Present-day venting activity occurs alongside the two alleged mud volcanoes and is dominated by CO2-rich discharging fluids. This discover led us to question the hypothesis of the mud volcanoes and investigate the origin of the fluids in each different domed structure of the study area. In this study, we used stable isotopes (carbon and oxygen) of carbonates coupled with rare earth element (REE) composition of different carbonate and non-carbonate phases for tracing fluid composition and early diagenesis of authigenic precipitates. The analyses on authigenic precipitates were coupled with chemical investigation of venting gas and sea-water. Authigenic calcite/aragonite concretions, from surficial sediments on diapiric structures, have depleted 13C isotopic composition and slightly positive delta18O values. By contrast, siderite concretions, generally found within the first 6 m of sediments on the alleged mud volcanoes, yielded positive delta13C and delta18O values. The siderite REE pattern shows consistent LREE (light REE) fractionation, MREE (medium REE) enrichment and positive Gd and La anomalies. As shown by the REE distribution, the 13C-depleted composition and their association with chemosymbiotic fauna, calcite/aragonite precipitated at time of moderate to high methane flux close to the seafloor, under the influence of bottom seawater. Authigenic siderite, on the other hand, formed in the subseafloor, during periods of lower gas discharges under prolonged anoxic conditions within sediments in equilibrium with 13C-rich dissolved inorganic carbon (DIC) and 18O-rich water, likely related to methanogenesis and intermittent venting of deep-sourced CO2.
2017
Istituto di Geoscienze e Georisorse - IGG - Sede Pisa
Istituto di Scienze Marine - ISMAR
Cold seep
Methanogenesis
Authigenic carbonates
Authigenic siderite
Trace elements
REE
Sulfate-methane transition zone
Stable isotopes
File in questo prodotto:
File Dimensione Formato  
prod_375571-doc_126545.pdf

solo utenti autorizzati

Descrizione: Authigenic minerals from the Paola Ridge (southern Tyrrhenian Sea): Evidences of episodic methane seepage
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 5.63 MB
Formato Adobe PDF
5.63 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
prod_375571-doc_187205.pdf

accesso aperto

Descrizione: 375571
Tipologia: Documento in Pre-print
Licenza: Creative commons
Dimensione 3.92 MB
Formato Adobe PDF
3.92 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/333794
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 25
  • ???jsp.display-item.citation.isi??? ND
social impact