Hydrogen bonding plays an essential role on intermolecular forces, and consequently on the thermodynamics of materials defined by this elusive bonding character. It determines the property of a vital liquid as water as well as many processes crucial for life. The longstanding controversy on the nature of the hydrogen bond (HB) can be settled by looking at the effect of a vanishing HB interaction on the microscopic properties of a given hydrogen-bonded fluid. This task suits the capabilities of computer simulations techniques, which allow to easily switch off HB interactions. We then use molecular dynamics to study the microscopic properties of methanol, a prototypical HB liquid. Fundamental aspects of the dynamics of methanol at room temperature were contextualised only very recently and its rich dynamics was found to have striking analogies with that of water. The lower temperature (200 K) considered in the present study led us to observe that the molecular centre-of-mass dynamics is dominated by four modes. Most importantly, the computational ability to switch on and off hydrogen bonds permitted us to identify which, among these modes, have a pure HB-origin. This clarifies the role of hydrogen bonds in liquid dynamics, disclosing new research opportunities and unexplored interpretation schemes.

Switching off hydrogen-bond-driven excitation modes in liquid methanol

Bellissima S;Bafile U;Formisano F;
2017

Abstract

Hydrogen bonding plays an essential role on intermolecular forces, and consequently on the thermodynamics of materials defined by this elusive bonding character. It determines the property of a vital liquid as water as well as many processes crucial for life. The longstanding controversy on the nature of the hydrogen bond (HB) can be settled by looking at the effect of a vanishing HB interaction on the microscopic properties of a given hydrogen-bonded fluid. This task suits the capabilities of computer simulations techniques, which allow to easily switch off HB interactions. We then use molecular dynamics to study the microscopic properties of methanol, a prototypical HB liquid. Fundamental aspects of the dynamics of methanol at room temperature were contextualised only very recently and its rich dynamics was found to have striking analogies with that of water. The lower temperature (200 K) considered in the present study led us to observe that the molecular centre-of-mass dynamics is dominated by four modes. Most importantly, the computational ability to switch on and off hydrogen bonds permitted us to identify which, among these modes, have a pure HB-origin. This clarifies the role of hydrogen bonds in liquid dynamics, disclosing new research opportunities and unexplored interpretation schemes.
2017
Istituto di Fisica Applicata - IFAC
Istituto dei Sistemi Complessi - ISC
Istituto Officina dei Materiali - IOM -
.
Liquids dynamics
Hydrogen bond
Simulations
Methanol
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/333806
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? ND
social impact