The brain is a paradigmatic example of a complex system: its functionality emerges as a global property of local mesoscopic and microscopic interactions. Complex network theory allows to elicit the functional architecture of the brain in terms of links (correlations) between nodes (grey matter regions) and to extract information out of the noise. Here we present the analysis of functional magnetic resonance imaging data from forty healthy humans at rest for the investigation of the basal scaffold of the functional brain network organization. We show how brain regions tend to coordinate by forming a highly hierarchical chain-like structure of homogeneously clustered anatomical areas. A maximum spanning tree approach revealed the centrality of the occipital cortex and the peculiar aggregation of cerebellar regions to form a closed core. We also report the hierarchy of network segregation and the level of clusters integration as a function of the connectivity strength between brain regions.

Organization and hierarchy of the human functional brain network lead to a chain-like core

Gabrielli A.;Caldarelli G.;Gili T.
2017

Abstract

The brain is a paradigmatic example of a complex system: its functionality emerges as a global property of local mesoscopic and microscopic interactions. Complex network theory allows to elicit the functional architecture of the brain in terms of links (correlations) between nodes (grey matter regions) and to extract information out of the noise. Here we present the analysis of functional magnetic resonance imaging data from forty healthy humans at rest for the investigation of the basal scaffold of the functional brain network organization. We show how brain regions tend to coordinate by forming a highly hierarchical chain-like structure of homogeneously clustered anatomical areas. A maximum spanning tree approach revealed the centrality of the occipital cortex and the peculiar aggregation of cerebellar regions to form a closed core. We also report the hierarchy of network segregation and the level of clusters integration as a function of the connectivity strength between brain regions.
2017
Istituto dei Sistemi Complessi - ISC
RESTING-STATE FMRI; VON ECONOMO NEURONS; LOW-FREQUENCY; SMALL-WORLD; CONNECTIVITY; ARCHITECTURE; CORTEX; FLUCTUATIONS; INTEGRATION; CEREBELLUM
File in questo prodotto:
File Dimensione Formato  
prod_375588-doc_126645.pdf

accesso aperto

Descrizione: Organization and hierarchy of the human functional brain network lead to a chain-like core
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 5.24 MB
Formato Adobe PDF
5.24 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/333811
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? ND
social impact