Cytosolic 5'-nucleotidase/phosphotransferase (cN-II), specific for purine monophosphates and their deoxyderivatives, acts through the formation of a phosphoenzyme intermediate. Phosphate may either be released leading to 5'-mononucleotide hydrolysis or be transferred to an appropriate nucleoside acceptor, giving rise to a mononucleotide interconversion. Chemical reagents specifically modifying aspartate and glutamate residues inhibit the enzyme, and this inhibition is partially prevented by cN-II substrates and physiological inhibitors. Peptide mapping experiments with the phosphoenzyme previously treated with tritiated borohydride allowed isolation of a radiolabeled peptide. Sequence analysis demonstrated that radioactivity was associated with a hydroxymethyl derivative that resulted from reduction of the Asp-52-phosphate intermediate. Site-directed mutagenesis experiments confirmed the essential role of Asp-52 in the catalytic machinery of the enzyme and suggested also that Asp-54 assists in the formation of the acyl phosphate species. From sequence alignments we conclude that cytosolic 5'-nucleotidase, along with other nucleotidases, belong to a large superfamily of hydrolases with different substrate specificities and functional roles.

Bovine cytosolic 5'-nucleotidase acts through the formation of an aspartate 52-phosphoenzyme intermediate.

Scaloni A;Ferrara L;
2001

Abstract

Cytosolic 5'-nucleotidase/phosphotransferase (cN-II), specific for purine monophosphates and their deoxyderivatives, acts through the formation of a phosphoenzyme intermediate. Phosphate may either be released leading to 5'-mononucleotide hydrolysis or be transferred to an appropriate nucleoside acceptor, giving rise to a mononucleotide interconversion. Chemical reagents specifically modifying aspartate and glutamate residues inhibit the enzyme, and this inhibition is partially prevented by cN-II substrates and physiological inhibitors. Peptide mapping experiments with the phosphoenzyme previously treated with tritiated borohydride allowed isolation of a radiolabeled peptide. Sequence analysis demonstrated that radioactivity was associated with a hydroxymethyl derivative that resulted from reduction of the Asp-52-phosphate intermediate. Site-directed mutagenesis experiments confirmed the essential role of Asp-52 in the catalytic machinery of the enzyme and suggested also that Asp-54 assists in the formation of the acyl phosphate species. From sequence alignments we conclude that cytosolic 5'-nucleotidase, along with other nucleotidases, belong to a large superfamily of hydrolases with different substrate specificities and functional roles.
2001
Istituto per il Sistema Produzione Animale in Ambiente Mediterraneo - ISPAAM
File in questo prodotto:
File Dimensione Formato  
prod_51477-doc_89877.pdf

accesso aperto

Descrizione: Bovine cytosolic 5'-nucleotidase acts through the formation of an aspartate 52-phosphoenzyme intermediate.
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 750.78 kB
Formato Adobe PDF
750.78 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/33393
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact